A136678 Triangle read by rows: n-th row (n>=0) gives coefficients of characteristic polynomial of n X n generalized Cartan matrix M defined in Comments.
1, 2, -1, 2, -4, 1, 2, -9, 6, -1, 1, -16, 20, -8, 1, 0, -24, 50, -35, 10, -1, -2, -32, 104, -112, 54, -12, 1, -4, -38, 190, -293, 210, -77, 14, -1, -7, -40, 314, -664, 659, -352, 104, -16, 1, -10, -35, 478, -1349, 1772, -1286, 546, -135, 18, -1, -14, -20, 677, -2512, 4234, -3992, 2274, -800, 170, -20, 1
Offset: 0
Examples
Triangle begins: {1}, {2, -1}, {2, -4, 1}, {2, -9, 6, -1}, {1, -16, 20, -8,1}, {0, -24, 50, -35, 10, -1}, {-2, -32, 104, -112, 54, -12, 1}, {-4, -38, 190, -293, 210, -77, 14, -1}, {-7, -40, 314, -664, 659, -352, 104, -16, 1}, {-10, -35, 478, -1349, 1772, -1286, 546, -135, 18, -1}, {-14, -20,677, -2512, 4234, -3992, 2274, -800, 170, -20, 1} ... For n=4, the matrix M is [2,-1,0,0], [-1,2,-1,0], [0,-2,2,-1], [0,0,-1,2], which has charpoly x^4-8*x^3+20*x^2-16*x+1. The coefficients (starting with the constant term) give row 4 of the triangle.
Programs
-
Mathematica
T[n_, m_, d_] := If[ n == m, 2, If[n == Floor[d/2] + 1 && m == Floor[d/2], -2, If[(n == m - 1 || n == m + 1), -1, 0]]]; M[d_] := Table[T[n, m, d], {n, 1, d}, {m, 1, d}]; a0 = Table[M[d], {d, 1, 10}]; Table[Det[M[d]], {d, 1, 10}]; g = Table[Det[M[d] - x*IdentityMatrix[d]], {d, 1, 10}]; a = Join[{{1}}, Table[CoefficientList[Det[M[d] - x*IdentityMatrix[d]], x], {d, 1, 10}]]; Flatten[a] MatrixForm[a];
Formula
T(n, m, d)= If[ n == m, 2, If[n == Floor[d/2] + 1 && m == Floor[d/2], -2, If[(n == m - 1 || n == m + 1), -1, 0]]]
Extensions
Edited by N. J. A. Sloane, Jan 27 2014
Comments