A136716 Triangle T(n,k), 0 <= k < n, read by rows: T(n,k) is the number of permutations of the set O_n = {1,3,5,...,2n-1} with k excedances.
1, 0, 2, 0, 2, 4, 0, 0, 12, 12, 0, 0, 12, 72, 36, 0, 0, 0, 144, 432, 144, 0, 0, 0, 144, 1728, 2592, 576, 0, 0, 0, 0, 2880, 17280, 17280, 2880, 0, 0, 0, 0, 2880, 57600, 172800, 115200, 14400, 0, 0, 0, 0, 0, 86400, 864000, 1728000, 864000, 86400
Offset: 1
Examples
T(3,2) = 4; the four permutations of the set {1,3,5} with 2 excedances are (1,3,5), (3,1,5), (3,5,1) and (5,3,1). Triangle starts n\k|..0....1....2....3....4....5 -------------------------------- 1..|..1 2..|..0....2 3..|..0....2....4 4..|..0....0...12...12 5..|..0....0...12...72...36 6..|..0....0....0..144..432..144
Links
- Fredrik Jansson, Variations on the excedance statistic in permutations.
- S. Kitaev and J. Remmel, Classifying descents according to parity, Annals of Combinatorics, 11, 2007, 173-193.
Formula
Recurrence relations: T(2n,k) = (k+1-n)*T(2n-1,k) + (3n-k)*T(2n-1,k-1) for n >= 1; T(2n+1,k) = (k+1-n)*T(2n,k) + (3n+1-k)*T(2n,k-1) for n >= 0. Boundary conditions: T(0,k) = 0 all k; T(1,0) = 1; T(n,0) = 0 for n > 1.
The recurrence relations have the explicit solution T(2n,n+k) = n!^2 * C(n-1,k) * C(n+1,k+1) and T(2n+1,n+k) = n!*(n+1)!*C(n,k)*C(n+1,k), or as a single formula, T(n,k) = floor(n/2)! * floor((n+1)/2)! * C(floor((n-1)/2),k-floor(n/2)) * C(floor(n/2)+1,k-floor((n-1)/2)).
Also T(2n,n+k) = n!*(n+1)!*N(n,k+1), where N(n,k) denotes the Narayana number A001263 (n,k).
For the even numbered rows, define the shifted row polynomials G(2n,x) := x^(1-n)* sum {k = n..2n-1} T(2n,k)*x^k . For the odd numbered rows, define the shifted row polynomials G(2n+1,x) := x^(1-n)* sum {k = n..2n} T(2n+1,k)*x^k.
The first few values are G(1,x) = x, G(2,x) = 2x, G(3,x) = 2x+4x^2 and G(4,x) = 12x+12x^2. The recurrence relations yield the identities x*d/dx(1/x*G(2n-1,x)/(1-x)^(2n)) = G(2n,x)/(1-x)^(2n+1) and x*d/dx(G(2n,x)/(1-x)^(2n+1)) = G(2n+1,x)/(1-x)^(2n+2), for n = 1,2,3,... .
An easy induction argument now gives the Taylor series expansions: G(2n,x)/(1-x)^(2n+1) = sum {m = 1..inf} m*((m+1)*(m+2)*...*(m+n-1))^2*(m+n)*x^m (note: there is a typo in proposition 3.3 of [Jansson]); G(2n+1,x)/(1-x)^(2n+2) = sum {m = 1..inf} (m*(m+1)*...*(m+n-1))^2*(m+n)*x^m.
For example, when n = 3 we have for row 6 the expansion (144x+432x^2+144x^3)/(1-x)^7 = 144x + 1440x^2+ 7200x^3 + ... = 1*(2*3)^2*4*x + 2*(3*4)^2*5*x^2 + 3*(4*5)^2*6*x^3 + ... and for row 7 the expansion (144x + 1728x^2 + 2592x^3 + 576x^4)/(1-x)^8 = 144x + 2880x^2 + 21600x^3 + ... = (1.2.3)^2*4*x + (2.3.4)^2*5*x^2 + (3.4.5)^2*6*x^3 + ... .
Relation with the Jacobi polynomials P_n(a,b,x): G(2n+2,x) = n!*(n+2)!*x*(1-x)^n*P_n(1,1,(1+x)/(1-x)), G(2n+1,x) = n!*(n+1)!*x*(1-x)^n *P_n(0,1,(1+x)/(1-x)).
Worpitzky-type identities:
Sum {k = n..2n-1} T(2n,k)*C(x+k,2n) = x*((x+1)*(x+2)*...*(x+n-1))^2*(x+n);
sum {k = n..2n} T(2n+1,k)*C(x+k,2n+1) = x*((x+1)*(x+2)*...*(x+n))^2; and for the odd numbered rows read in reverse order, sum {k = n..2n} T(2n+1,3n-k)*C(x+k,2n+1) = (x*(x+1)*(x+2)*...*(x+n-1))^2*(x+n).
Comments