A136717 Triangle T(n,k), 1 <= k <= n, read by rows: T(n,k) is the number of permutations in the symmetric group S_n having k multiplicative 3-excedances. Equivalently, the number of permutations of the set {3,6,9,...,3n} with k excedances.
1, 0, 2, 0, 2, 4, 0, 0, 12, 12, 0, 0, 0, 72, 48, 0, 0, 0, 72, 456, 192, 0, 0, 0, 0, 960, 3120, 960, 0, 0, 0, 0, 0, 10800, 23760, 5760, 0, 0, 0, 0, 0, 10800, 133920, 183600, 34560, 0, 0, 0, 0, 0, 0, 241920, 1572480, 1572480, 241920
Offset: 1
Examples
T(3,3) = 4; the four permutations in S_3 with three multiplicative 3-excedances are (1,2,3), (1,3,2), (2,1,3) and (3,1,2). The remaining two permutations (2,3,1) and (3,2,1) each have two multiplicative 3-excedances. Equivalently, the four permutations of the set {3,6,9} with 3 excedances are (3,6,9), (3,9,6), (6,3,9) and (9,3,6). The remaining two permutations (6,9,3) and (9,6,3) each have 2 excedances. Triangle starts n\k|..1....2....3....4....5....6 ---+---------------------------- 1..|..1 2..|..0....2 3..|..0....2....4 4..|..0....0...12...12 5..|..0....0....0...72...48 6..|..0....0....0...72..456..192
Links
- Fredrik Jansson, Variations on the excedance statistic in permutations, Thesis, Stockholm University, 2006.
- S. Kitaev and J. Remmel, Classifying descents according to equivalence mod k, arXiv:math/0604455 [math.CO], 2006.
Formula
Recurrence relations (apply proposition 2.2 of [Jansson]):
T(3n,k) = (k+1-2n)*T(3n-1,k) + (5n-k)*T(3n-1,k-1) for n >= 1;
T(3n+1,k) = (k-2n)*T(3n,k) + (5n+2-k)*T(3n,k-1) for n >= 0;
T(3n+2,k) = (k-1-2n)*T(3n+1,k) + (5n+4-k)*T(3n+1,k-1) for n >= 0.
Boundary conditions: T(0,k) = 0 all k; T(n,0) = 0 all n; T(1,1) = 1.
Define the shifted row polynomials R(n,x) by
R(n,x) := x^(1+floor(n/3)-n)* sum {k = n-floor(n/3)..n} T(n,k)*x^k.
The first few values are R(1,x) = x, R(2,x) = 2x, R(3,x) = 2x+4x^2 and R(4,x) = 12x+12x^2.
The recurrence relations yield the identities:
x*d/dx(1/x*R(3n,x)/(1-x)^(3n+1)) = R(3n+1,x)/(1-x)^(3n+2);
x*d/dx(1/x*R(3n+1,x)/(1-x)^(3n+2)) = R(3n+2,x)/(1-x)^(3n+3);
x*d/dx(R(3n+2,x)/(1-x)^(3n+3)) = R(3n+3,x)/(1-x)^(3n+4).
An easy induction argument now gives the Taylor series expansions:
R(3n,x)/(1-x)^(3n+1) = sum {m = 1..inf} m^2*(m+1)*(m+2)^2*(m+3)*...* (m+2n-2)^2*(m+2n-1)*x^m;
R(3n+1,x)/(1-x)^(3n+2) = sum {m = 1..inf} m*((m+1)^2*(m+2)*(m+3)^2*(m+4) *...*(m+2n-1)^2*(m+2n))*x^m.
R(3n+2,x)/(1-x)^(3n+3) = sum {m = 1..inf} m*((m+1)*(m+2)^2*(m+3)*(m+4)^2 *...*(m+2n-1)*(m+2n)^2)*(m+2n+1)*x^m.
For example, for row 6 (n = 2) we have the expansion (72x+456x^2+192x^3)/(1-x)^7 = 72x + 960x^2 + 5400x^3 + ... = (1^2*2*3^2*4)*x + (2^2*3*4^2*5)*x^2 + (3^2*4*5^2*6)*x^3 + ... .
Comments