A136721 Prime quadruples: 3rd term.
11, 17, 107, 197, 827, 1487, 1877, 2087, 3257, 3467, 5657, 9437, 13007, 15647, 15737, 16067, 18047, 18917, 19427, 21017, 22277, 25307, 31727, 34847, 43787, 51347, 55337, 62987, 67217, 69497, 72227, 77267, 79697, 81047, 82727, 88817, 97847
Offset: 1
Examples
The four terms in the first quadruple are 5,7,11,13 and in the 2nd 11,13,17,19. The four terms or members of each set must be simultaneously prime.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
p2:= 0: p3:= 0: p4:= 0: Res:= NULL: count:= 0: while count < 100 do p1:= p2; p2:= p3; p3:= p4; p4:= nextprime(p4); if [p2-p1, p3-p2, p4-p3] = [2, 4, 2] then count:= count+1; Res:= Res, p3 fi od: Res; # Robert Israel, Oct 11 2019
-
Mathematica
lst={};Do[p0=Prime[n];If[PrimeQ[p2=p0+2], If[PrimeQ[p6=p0+6], If[PrimeQ[p8=p0+8], AppendTo[lst, p6]]]], {n, 12^4}];lst (* Vladimir Joseph Stephan Orlovsky, Aug 22 2008 *)
Formula
Extensions
Edited by Charles R Greathouse IV, Oct 11 2009
Comments