A136733 Square array, read by antidiagonals, where T(n,k) = T(n,k-1) + T(n-1,k+n) for n>0, k>0, such that T(n,0) = T(n-1,n) for n>0 with T(0,k)=1 for k>=0.
1, 1, 1, 3, 2, 1, 18, 7, 3, 1, 170, 43, 12, 4, 1, 2220, 403, 76, 18, 5, 1, 37149, 5188, 711, 118, 25, 6, 1, 758814, 85569, 9054, 1107, 170, 33, 7, 1, 18301950, 1725291, 147471, 13986, 1605, 233, 42, 8, 1, 508907970, 41145705, 2938176, 225363, 20171, 2220, 308
Offset: 0
Examples
Square array begins: (1), 1, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,...]; (1,2), 3, 4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,...; (3,7,12), 18, 25,33,42,52,63,75,88,102,117,133,150,168,187,207,228,...; (18,43,76,118), 170, 233,308,396,498,615,748,898,1066,1253,1460,...; (170,403,711,1107,1605), 2220, 2968,3866,4932,6185,7645,9333,11271,...; (2220,5188,9054,13986,20171,27816), 37149, 48420,61902,77892,96712,...; (37149,85569,147471,225363,322075,440785,585046), 758814, 966477,...; (758814,1725291,2938176,4441557,6285390,8526057,11226958,14459138), ...; where the rows are generated as follows. Start row 0 with all 1's; from then on, remove the first n+1 terms (shown in parenthesis) from row n and then take partial sums to yield row n+1. Note the first upper diagonal forms column 0 and equals A101483: [1,1,3,18,170,2220,37149,758814,18301950,508907970,16023271660,...] which equals column 2 of triangle A101479: 1; 1, 1; 1, 1, 1; 3, 2, 1, 1; 19, 9, 3, 1, 1; 191, 70, 18, 4, 1, 1; 2646, 795, 170, 30, 5, 1, 1; 46737, 11961, 2220, 335, 45, 6, 1, 1; 1003150, 224504, 37149, 4984, 581, 63, 7, 1, 1; ... where row n equals row (n-1) of T^(n-1) with appended '1'.
Crossrefs
Programs
-
PARI
{T(n,k)=if(k<0,0,if(n==0,1,T(n,k-1) + T(n-1,k+n)))}