A136737 Square array, read by antidiagonals, where T(n,k) = T(n,k-1) + T(n-1,k+n+1) for n>0, k>0, such that T(n,0) = T(n-1,n+1) for n>0 with T(0,k)=1 for k>=0.
1, 1, 1, 4, 2, 1, 30, 9, 3, 1, 335, 69, 15, 4, 1, 4984, 769, 118, 22, 5, 1, 92652, 11346, 1317, 178, 30, 6, 1, 2065146, 208914, 19311, 1995, 250, 39, 7, 1, 53636520, 4613976, 352636, 29126, 2820, 335, 49, 8, 1, 1589752230, 118840164, 7722840, 528097, 41061
Offset: 0
Examples
Square array begins: (1,1), 1, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,...; (1,2,3), 4, 5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,...; (4,9,15,22), 30, 39,49,60,72,85,99,114,130,147,165,184,204,225,247,...; (30,69,118,178,250), 335, 434,548,678,825,990,1174,1378,1603,1850,...; (335,769,1317,1995,2820,3810), 4984, 6362,7965,9815,11935,14349,...; (4984,11346,19311,29126,41061,55410,72492), 92652, 116262, 143722,...; (92652,208914,352636,528097,740035,993678,1294776,1649634), 2065146,..; (2065146,4613976,7722840,11476963,15971180,21310710,27611970,35003430,43626510),..; where the rows are generated as follows. Start row 0 with all 1's; from then on, remove the first n+2 terms (shown in parenthesis) from row n and then take partial sums to yield row n+1. Note the second upper diagonal forms column 0 and equals A121413: [1,1,4,30,335,4984,92652,2065146,53636520,1589752230,52926799310,...]. which equals column 3 of triangle A101479: 1; 1, 1; 1, 1, 1; 3, 2, 1, 1; 19, 9, 3, 1, 1; 191, 70, 18, 4, 1, 1; 2646, 795, 170, 30, 5, 1, 1; 46737, 11961, 2220, 335, 45, 6, 1, 1; 1003150, 224504, 37149, 4984, 581, 63, 7, 1, 1; ... where row n equals row (n-1) of T^(n-1) with appended '1'.
Crossrefs
Programs
-
PARI
{T(n,k)=if(k<0,0,if(n==0,1,T(n,k-1) + T(n-1,k+n+1)))}