cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A136808 Numbers k such that k and k^2 use only the digits 0, 1 and 2.

Original entry on oeis.org

0, 1, 10, 11, 100, 101, 110, 1000, 1001, 1010, 1011, 1100, 1101, 10000, 10001, 10010, 10011, 10100, 10110, 11000, 11001, 11010, 100000, 100001, 100010, 100011, 100100, 100101, 100110, 101000, 101001, 101100, 110000, 110001, 110010, 110100, 1000000, 1000001, 1000010, 1000011, 1000100
Offset: 1

Views

Author

Jonathan Wellons (wellons(AT)gmail.com), Jan 22 2008

Keywords

Comments

Generated with DrScheme.
Subsequence of A136809, A136816, ..., A136836. - M. F. Hasler, Jan 24 2008
A278038(18) = 10101, A136827(294) = 10110001101, A136831(1276) = 101100010001101 resp. A136836(1262) = 101090009991101 are the first terms from where on these four sequences differ from the present one. - M. F. Hasler, Nov 15 2017
From Jovan Radenkovicc, Nov 15 2024: (Start)
A nonnegative integer n is in this sequence iff 10*n is also in this sequence.
Not a subsequence of A278038 (binary numbers without '111'). A counterexample is 10^2884 + 10^2880 + 10^2872 + 10^2857 + 10^2497 + 10^2426 + 10^2285 + 10^2004 + 10^1443 + 10^1442 + 10^1441 + 10^881 + 10^600 + 10^459 + 10^388 + 10^27 + 10^12 + 10^4 + 1. There are infinitely many counterexamples not divisible by 10. This counterexample follows from the fact that 111^2+2000*4+200*4=12321+8000+800=21121. In fact, every binary substring will eventually occur in this sequence. Also, if n is a term containing only the digits 0 and 1, then 10^k*n+1 and n+10^k are also in this sequence for any sufficiently large integer k. (End)

Examples

			101000100100001^2 = 10201020220210222010200200001.
		

Crossrefs

A subsequence of the binary numbers A007088.
Cf. A278038.
Cf. A136809, A136810, ..., A137147 for other digit combinations.
See also A058412 = A058411^2: squares having only digits {0,1,2}, A277946 = A277959^2 = squares whose largest digit is 2.

Programs

  • Maple
    isA136808 := proc(n) local ndgs,n2dgs ; ndgs := convert(convert(n,base,10),set) ; n2dgs := convert(convert(n^2,base,10),set) ; if ( (ndgs union n2dgs) minus {0,1,2} ) = {} then true ; else false ; fi ; end: LtonRev := proc(L) local i ; add(op(i,L)*10^(i-1),i=1..nops(L)) ; end: A007089 := proc(n) convert(n,base,3) ; LtonRev(%) ; end: n := 1: for i from 0 do n3 := A007089(i) ; if isA136808(n3) then printf("%d %d ",n,n3) ; n := n+1 ; fi ; od: # R. J. Mathar, Jan 24 2008
  • Mathematica
    Select[FromDigits/@Tuples[{0,1},7],Union[Take[DigitCount[#^2],{3,9}]]=={0}&] (* Harvey P. Dale, May 29 2013 *)
  • PARI
    for(n=1,999,vecmax(digits((N=fromdigits(binary(n),10))^2))<3 && print1(N",")) \\ M. F. Hasler, Nov 15 2017