A136859 Numbers k such that k and k^2 use only the digits 0, 1, 4 and 6.
0, 1, 4, 10, 40, 100, 400, 1000, 4000, 10000, 40000, 100000, 400000, 1000000, 4000000, 10000000, 40000000, 100000000, 400000000, 1000000000, 4000000000, 10000000000, 40000000000, 100000000000, 400000000000, 1000000000000, 4000000000000, 10000000000000, 40000000000000, 100000000000000, 400000000000000
Offset: 1
Examples
400000000000000^2 = 160000000000000000000000000000.
Links
- David W. Wilson, Table of n, a(n) for n = 1..61
- Jonathan Wellons, Tables of Shared Digits [archived].
Programs
-
Mathematica
clearQ[n_]:=Module[{dc = DigitCount[n]}, dc[[2]] == dc[[3]] == dc[[5]] == dc[[7]] == dc[[8]] == dc[[9]] == 0] Select[Range[0, 2*10^6], clearQ[#]&&clearQ[#^2] &] (* Vincenzo Librandi, Feb 02 2016 *)
Formula
Conjectures from Philippe Deléham, Mar 11 2014: (Start)
G.f.: x^2*(1+4*x)/(1-10*x^2);
a(1) = 0, a(2) = 1, a(3) = 4, a(n) = 10*a(n-2) for n>3. (End)
This yields: a(n) = 4^(n mod 2)*A178501(floor(n/2)), where A178501(n) = floor(10^(k-1)). - M. F. Hasler, Nov 09 2017
Extensions
Replaced formulas by conjectures, deleted b-file and computer program based on these conjectures. - N. J. A. Sloane, Jan 29 2016
M. F. Hasler, Jan 29 2016, reports that he has confirmed that the terms shown are complete up to a(31) = 400000000000000. - N. J. A. Sloane, Jan 30 2016
Extended b-file with complete values up to a(61). - David W. Wilson, Feb 01 2016
Comments