cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A137154 a(n) = Sum_{k=0..n} binomial(2^k + n-k-1, n-k); equals the row sums of triangle A137153.

Original entry on oeis.org

1, 2, 4, 9, 24, 79, 331, 1803, 12954, 123983, 1592513, 27604172, 648528166, 20722205191, 903019659239, 53792176322629, 4388683843024734, 491232972054490915, 75545748143323475653, 15984344095578889888206
Offset: 0

Views

Author

Paul D. Hanna, Jan 24 2008

Keywords

Comments

Matrix inverse of A137153 is A137156.

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[2^(n-k) + k - 1, k], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Jan 23 2021 *)
  • PARI
    a(n)=sum(k=0,n,binomial(2^k+n-k-1,n-k))
    
  • PARI
    {a(n)=local(A=sum(k=0,n,x^k/(1-x+x*O(x^n))^(2^k)));polcoeff(A,n)} \\ Paul D. Hanna, Sep 15 2009

Formula

G.f.: Sum_{n>=0} x^n/(1-x)^(2^n). - Paul D. Hanna, Sep 15 2009
G.f.: Sum_{n>=0} ( (-log(1 - x))^n / n! ) / (1 - 2^n*x). - Paul D. Hanna, Jan 23 2021