cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A141135 Minimal number of unit edges required to construct n regular pentagons when allowing edge-sharing.

Original entry on oeis.org

5, 9, 13, 17, 21, 24, 28, 32, 36, 39, 43, 47, 50, 54, 58, 61, 65, 69, 72, 76, 80, 83, 87, 90, 94, 98, 101, 105, 109, 112
Offset: 1

Views

Author

Ralph H. Buchholz (teufel_pi(AT)yahoo.com), Jun 08 2008

Keywords

Examples

			a(6) = 24 since the first pentagon requires 5 edges, the 2nd, 3rd, 4th and 5th pentagons require an additional 4 edges each and the 6th pentagon requires 3 edges since it can share 2 edges (if one tiles via a 6-cycle). Thus 24 = 5 + 4 + 4 + 4 + 4 + 3.
		

Crossrefs

Cf. equilateral triangles A137228, squares A078633, regular hexagons A135708.
Cf. A121149.

Formula

Conjectures from Colin Barker, Apr 05 2019: (Start)
G.f.: x*(5 + 4*x + 4*x^2 - x^3 - x^5 + x^8 - x^9) / ((1 - x)^2*(1 + x + x^2)).
a(n) = a(n-1) + a(n-3) - a(n-4) for n>10.
(End)
Conjecture: if n is a term in A121149, a(n) = a(n-1) + 3, otherwise a(n) = a(n-1) + 4. - Jinyuan Wang, Apr 05 2019

Extensions

a(21)-a(30) from Jinyuan Wang, Apr 05 2019
Showing 1-1 of 1 results.