A137276 Triangle T(n,k), read by rows: T(n,k)= 0 if n-k odd. T(n,k)= 2*(-1)^((n-k)/2)*(2k-n)/(n+k)*binomial((n+k)/2,(n-k)/2) if n-k even.
1, 0, 1, 2, 0, 1, 0, 1, 0, 1, -2, 0, 0, 0, 1, 0, -3, 0, -1, 0, 1, 2, 0, -3, 0, -2, 0, 1, 0, 5, 0, -2, 0, -3, 0, 1, -2, 0, 8, 0, 0, 0, -4, 0, 1, 0, -7, 0, 10, 0, 3, 0, -5, 0, 1, 2, 0, -15, 0, 10, 0, 7, 0, -6, 0, 1, 0, 9, 0, -25, 0, 7, 0, 12, 0, -7, 0, 1, -2, 0, 24, 0, -35, 0, 0, 0, 18, 0, -8, 0, 1, 0, -11, 0, 49, 0, -42, 0, -12, 0
Offset: 0
Examples
{1}, = 1 {0, 1}, = x {2, 0, 1}, = 2+x^2 {0, 1, 0, 1}, = x+x^3 {-2, 0, 0, 0, 1}, = -2+x^4 {0, -3, 0, -1, 0, 1}, = -3x-x^3+x^5 {2, 0, -3, 0, -2, 0, 1}, {0, 5, 0, -2, 0, -3, 0, 1}, {-2, 0, 8, 0, 0, 0, -4, 0, 1}, {0, -7, 0, 10, 0, 3, 0, -5, 0, 1}, {2, 0, -15, 0, 10, 0, 7, 0, -6, 0, 1}, {0, 9, 0, -25, 0, 7, 0, 12, 0, -7, 0, 1}
Links
- P. Steinbach, Golden fields: a case for the heptagon, Math. Mag. 70 (1997), no. 1, 22-31, MR 1439165
Programs
Formula
Extensions
Fourth row inserted by the Associate Editors of the OEIS, Aug 27 2009
Comments