A136255 Triangle T(n,k) read by rows: T(n,k) = (k+1) * A137276(n,k+1).
1, 0, 2, 1, 0, 3, 0, 0, 0, 4, -3, 0, -3, 0, 5, 0, -6, 0, -8, 0, 6, 5, 0, -6, 0, -15, 0, 7, 0, 16, 0, 0, 0, -24, 0, 8, -7, 0, 30, 0, 15, 0, -35, 0, 9, 0, -30, 0, 40, 0, 42, 0, -48, 0, 10, 9, 0, -75, 0, 35, 0, 84, 0, -63, 0, 11
Offset: 1
Examples
Triangle starts: {1}, {0, 2}, {1, 0, 3}, {0, 0, 0, 4}, {-3, 0, -3, 0, 5}, {0, -6, 0, -8, 0, 6}, {5, 0, -6, 0, -15, 0, 7}, {0, 16, 0, 0, 0, -24, 0, 8}, {-7, 0, 30, 0, 15, 0, -35, 0, 9}, {0, -30, 0, 40, 0,42, 0, -48, 0, 10}, {9, 0, -75, 0, 35, 0, 84, 0, -63, 0, 11}, ...
Programs
-
Maple
B := proc(n,x) if n = 0 then 1; else add( (-1)^j*binomial(n-j,j)*(n-4*j)/(n-j)*x^(n-2*j),j=0..n/2) ; fi; end: A136255 := proc(n,k) diff( B(n,x),x) ; coeftayl(%,x=0,k) ; end: seq( seq(A136255(n,k),k=0..n-1),n=1..15) ;
-
Mathematica
B[x, 0] = 1; B[x, 1] = x; B[x, 2] = 2 + x^2; B[x, 3] = x + x^3; B[x, 4] = -2 + x^4; B[x_, n_] := B[x, n] = x*B[x, n-1] - B[x, n-2]; P[x_, n_] := D[B[x, n + 1], x]; Flatten @ Table[CoefficientList[P[x, n], x], {n, 0, 10}]
Formula
T(n,k) = (k+1) * A137276(n,k+1) .
Extensions
Edited by the Associate Editors of the OEIS, Aug 27 2009
Edited by and new name from Joerg Arndt, May 15 2016
Comments