A136029 a(n) is the number of central ideals of a garland of order 2n, i.e., a(n) = g(2n,n), where g(n,k) is the number of ideals of size k in a garland (or double fence) of order n (see A137278).
1, 1, 1, 3, 7, 15, 33, 75, 171, 391, 899, 2077, 4815, 11195, 26097, 60975, 142751, 334791, 786419, 1849905, 4357121, 10274313, 24252923, 57305241, 135521807, 320758587, 759757139, 1800838381, 4271267043, 10136815015, 24070870545
Offset: 0
Examples
a(4) = 7, since the central ideals of the garland G(4): 5..6..7..8 o..o..o..o |\/|\/|\/| |/\|/\|/\| o..o..o..o 1..2..3..4 are: 1234, 1253, 1254, 1236, 2347, 1348, 2348. a(4)=7, since there are 7 such walks: NNNN, NENW, NWNE, ENWN, ENNW, WNEN, WNNE. - _Shanzhen Gao_, May 13 2011
References
- T. S. Blyth, J. C. Varlet, Ockham algebras, Oxford Science Pub. 1994.
- E. Munarini, Enumeration of order ideals of a garland, Ars Combin. 76 (2005), 185-192.
Links
- Emanuele Munarini, Table of n, a(n) for n = 0..100
- Aubrey Blecher and Arnold Knopfmacher, Prefixes of bargraph paths, Aequationes Math. (2023).
- Shanzhen Gao and Keh-Hsun Chen, Tackling Sequences From Prudent Self-Avoiding Walks, FCS'14, The 2014 International Conference on Foundations of Computer Science.
- S. Gao and H. Niederhausen, Sequences Arising From Prudent Self-Avoiding Walks, 2010.
- Emanuele Munarini, Combinatorial properties of the antichains of a garland, Integers, 9 (2009), 353-374.
Formula
Recurrence: (n+6)*a(n+6) - (2*n+11)*a(n+5) - (n+3)*a(n+4) - 4*a(n+3) - (n+4)*c_(n+2) - (2*n+3)*a(n+1) + (n+1), a(n) = 0.
G.f.: (1 - x^2)/sqrt( 1 - 2*x - x^2 - x^4 + 2*x^5 + x^6 ).
a(n) = 1+sum(k=1..floor((n-1)/2), sum(i=1..min(n-2*k,k), C(n-2*k+1,i) * C(k-1,k-i) * C(n-k-i,k) ) ). - Shanzhen Gao, May 13 2011
Comments