cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A137276 Triangle T(n,k), read by rows: T(n,k)= 0 if n-k odd. T(n,k)= 2*(-1)^((n-k)/2)*(2k-n)/(n+k)*binomial((n+k)/2,(n-k)/2) if n-k even.

Original entry on oeis.org

1, 0, 1, 2, 0, 1, 0, 1, 0, 1, -2, 0, 0, 0, 1, 0, -3, 0, -1, 0, 1, 2, 0, -3, 0, -2, 0, 1, 0, 5, 0, -2, 0, -3, 0, 1, -2, 0, 8, 0, 0, 0, -4, 0, 1, 0, -7, 0, 10, 0, 3, 0, -5, 0, 1, 2, 0, -15, 0, 10, 0, 7, 0, -6, 0, 1, 0, 9, 0, -25, 0, 7, 0, 12, 0, -7, 0, 1, -2, 0, 24, 0, -35, 0, 0, 0, 18, 0, -8, 0, 1, 0, -11, 0, 49, 0, -42, 0, -12, 0
Offset: 0

Views

Author

Roger L. Bagula and Gary W. Adamson, Mar 13 2008

Keywords

Comments

Polynomial coefficients of P(n,x) in increasing powers, read by rows, where P(0,x)=1, P(1,x)=x, P(2,x)=2+x^2, P(3,x)=x+x^3, P(4,x)=-2+x^4, and P(n,x) = x*P(n-1,x) - P(n-2,x) for n>=5.
The row-reversed version of A135929.
Row sums are repeating 1, 1, 3, 2, -1, -3, -2, 1, 3, 2, -1..., see A138034 and A119910.

Examples

			{1}, = 1
{0, 1}, = x
{2, 0, 1}, = 2+x^2
{0, 1, 0, 1}, = x+x^3
{-2, 0, 0, 0, 1}, = -2+x^4
{0, -3, 0, -1, 0, 1}, = -3x-x^3+x^5
{2, 0, -3, 0, -2, 0, 1},
{0, 5, 0, -2, 0, -3, 0, 1},
{-2, 0, 8, 0, 0, 0, -4, 0, 1},
{0, -7, 0, 10, 0, 3, 0, -5, 0, 1},
{2, 0, -15, 0, 10, 0, 7, 0, -6, 0, 1},
{0, 9, 0, -25, 0, 7, 0, 12, 0, -7, 0, 1}
		

Crossrefs

Programs

  • Maple
    A137276 := proc(n,k) local nmk,npk; if n = 0 then 1; elif (n-k) mod 2 <> 0 then 0; else nmk := (n-k)/2 ; npk := (n+k)/2 ; (-1)^nmk*(2*k-n)/npk*binomial(npk,nmk) ; fi; end:
    seq( seq(A137276(n,k),k=0..n),n=0..13) ;

Formula

T(n,k)= 0 if n-k odd. T(n,k)= 2*(-1)^((n-k)/2)*(2k-n)/(n+k)*binomial((n+k)/2,(n-k)/2) if n-k even.
P(n,x) = x*P(n-1,x)-P(n-2,x), n>=5.
P(n,2*x) = -2*T(n,x)+4*x*U(n-1,x), where T(n,x) is A053120 and U(n,x) is A053117.

Extensions

Fourth row inserted by the Associate Editors of the OEIS, Aug 27 2009

A136255 Triangle T(n,k) read by rows: T(n,k) = (k+1) * A137276(n,k+1).

Original entry on oeis.org

1, 0, 2, 1, 0, 3, 0, 0, 0, 4, -3, 0, -3, 0, 5, 0, -6, 0, -8, 0, 6, 5, 0, -6, 0, -15, 0, 7, 0, 16, 0, 0, 0, -24, 0, 8, -7, 0, 30, 0, 15, 0, -35, 0, 9, 0, -30, 0, 40, 0, 42, 0, -48, 0, 10, 9, 0, -75, 0, 35, 0, 84, 0, -63, 0, 11
Offset: 1

Views

Author

Roger L. Bagula, Mar 17 2008

Keywords

Comments

Row sums are 1, 2, 4, 4, -1, -8, -9, 0, 12, 14, 1, ... with g.f. x*(1+3*x^2) / (x^2-x+1)^2.

Examples

			Triangle starts:
{1},
{0, 2},
{1, 0, 3},
{0, 0, 0, 4},
{-3, 0, -3, 0, 5},
{0, -6, 0, -8, 0, 6},
{5, 0, -6, 0, -15, 0, 7},
{0, 16, 0, 0, 0, -24, 0, 8},
{-7, 0, 30, 0, 15, 0, -35, 0, 9},
{0, -30, 0, 40, 0,42, 0, -48, 0, 10},
{9, 0, -75, 0, 35, 0, 84, 0, -63, 0, 11},
...
		

Crossrefs

Programs

  • Maple
    B := proc(n,x) if n = 0 then 1; else add( (-1)^j*binomial(n-j,j)*(n-4*j)/(n-j)*x^(n-2*j),j=0..n/2) ; fi; end:
    A136255 := proc(n,k) diff( B(n,x),x) ; coeftayl(%,x=0,k) ; end: seq( seq(A136255(n,k),k=0..n-1),n=1..15) ;
  • Mathematica
    B[x, 0] = 1; B[x, 1] = x; B[x, 2] = 2 + x^2; B[x, 3] = x + x^3; B[x, 4] = -2 + x^4; B[x_, n_] := B[x, n] = x*B[x, n-1] - B[x, n-2]; P[x_, n_] := D[B[x, n + 1], x]; Flatten @ Table[CoefficientList[P[x, n], x], {n, 0, 10}]

Formula

T(n,k) = (k+1) * A137276(n,k+1) .

Extensions

Edited by the Associate Editors of the OEIS, Aug 27 2009
Edited by and new name from Joerg Arndt, May 15 2016
Showing 1-2 of 2 results.