cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A137320 Coefficients of raising factorial polynomials, T(n,k) = [x^k] p(x, n) where p(x, n) = (m*x + n - 1)*p(x, n - 1) with p[x, 0] = 1, p[x, -1] = 0, p[x, 1] = m*x and m = 2. Triangle read by rows, for n >= 0 and 0 <= k <= n.

Original entry on oeis.org

1, 0, 2, 0, 2, 4, 0, 4, 12, 8, 0, 12, 44, 48, 16, 0, 48, 200, 280, 160, 32, 0, 240, 1096, 1800, 1360, 480, 64, 0, 1440, 7056, 12992, 11760, 5600, 1344, 128, 0, 10080, 52272, 105056, 108304, 62720, 20608, 3584, 256, 0, 80640, 438336, 944992, 1076544, 718368, 290304, 69888, 9216, 512
Offset: 0

Views

Author

Roger L. Bagula, Apr 20 2008

Keywords

Comments

Row sums are factorials.
Also the Bell transform of A052849 (with a(0)=2). For the definition of the Bell transform see A264428. - Peter Luschny, Jan 27 2016

Examples

			[0] {1},
[1] {0, 2},
[2] {0, 2,     4},
[3] {0, 4,     12,     8},
[4] {0, 12,    44,     48,     16},
[5] {0, 48,    200,    280,    160,     32},
[6] {0, 240,   1096,   1800,   1360,    480,    64},
[7] {0, 1440,  7056,   12992,  11760,   5600,   1344,   128},
[8] {0, 10080, 52272,  105056, 108304,  62720,  20608,  3584,  256},
[9] {0, 80640, 438336, 944992, 1076544, 718368, 290304, 69888, 9216, 512}.
		

References

  • Steve Roman, The Umbral Calculus, Dover Publications, New York (1984), pp. 62-63

Crossrefs

Apart from signs, same as A137312.

Programs

  • Maple
    # The function BellMatrix is defined in A264428.
    BellMatrix(n -> `if`(n<2,2,2*n!), 8); # Peter Luschny, Jan 27 2016
    p := (n,x) -> (n + 2*x - 1)!/(2*x - 1)!:
    seq(seq(coeff(expand(p(n,x)), x, k), k=0..n), n=0..9); # Peter Luschny, Feb 26 2019
  • Mathematica
    m = 2; p[x, 0] = 1; p[x, -1] = 0; p[x, 1] = m*x;
    p[x_, n_] := p[x, n] = (m*x + n - 1)*p[x, n - 1];
    Table[CoefficientList[p[x, n], x], {n, 0, 9}] // Flatten
    (* Second program: *)
    BellMatrix[f_, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]];
    B = BellMatrix[Function[n, If[n < 2, 2, 2*n!]], rows = 12];
    Table[B[[n, k]], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 28 2018, after Peter Luschny *)

Formula

From Peter Luschny, Feb 26 2019: (Start)
p(n, x) = n!*Sum_{k=0..n} (-1)^n*binomial(-x, k)*binomial(-x, n-k).
p(n, x) = (n + 2*x - 1)!/(2*x - 1)!.
T(n, k) = [x^k] p(n,x). (End)

Extensions

Edited and offset set to 0 by Peter Luschny, Feb 26 2019