cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A137328 a(n) = prime(n) - primorial(k), where k is the greatest number for which primorial(k) <= prime(n).

Original entry on oeis.org

0, 1, 3, 1, 5, 7, 11, 13, 17, 23, 1, 7, 11, 13, 17, 23, 29, 31, 37, 41, 43, 49, 53, 59, 67, 71, 73, 77, 79, 83, 97, 101, 107, 109, 119, 121, 127, 133, 137, 143, 149, 151, 161, 163, 167, 169, 1, 13, 17, 19, 23, 29, 31, 41, 47, 53, 59, 61, 67, 71, 73, 83, 97, 101, 103, 107, 121
Offset: 1

Views

Author

Ctibor O. Zizka, Apr 07 2008

Keywords

Comments

Conjecture: Each prime number appears in this sequence at least once.
Is there any general asymptotic formula for the appearance of prime(n) in this sequence?

Examples

			a(6) = prime(6) - primorial(2) = 13 - 6 = 7.
		

Crossrefs

Programs

  • Mathematica
    pn=FoldList[Times, 1, Prime[Range[5]]] (* Increase for n>343 *); a[n_]:=Module[{k=1},Until[pn[[k]]>Prime[n],k++];Prime[n]-pn[[k-1]]];Array[a,67] (* James C. McMahon, May 28 2025 *)
  • PARI
    a(n) = {my(p=prime(n), q=1, P=1); until (P > p, q = nextprime(q+1); P *= q;); p - P/q;} \\ Michel Marcus, Mar 14 2022
    
  • Python
    from sympy import nextprime
    from itertools import islice
    def agen(): # generator of terms
        pn, primk, pk, pkplus = 2, 2, 2, 3
        while True:
            while primk * pkplus <= pn:
                primk, pk, pkplus = primk*pkplus, pkplus, nextprime(pkplus)
            yield pn - primk
            pn = nextprime(pn)
    print(list(islice(agen(), 67))) # Michael S. Branicky, Mar 14 2022