A137328 a(n) = prime(n) - primorial(k), where k is the greatest number for which primorial(k) <= prime(n).
0, 1, 3, 1, 5, 7, 11, 13, 17, 23, 1, 7, 11, 13, 17, 23, 29, 31, 37, 41, 43, 49, 53, 59, 67, 71, 73, 77, 79, 83, 97, 101, 107, 109, 119, 121, 127, 133, 137, 143, 149, 151, 161, 163, 167, 169, 1, 13, 17, 19, 23, 29, 31, 41, 47, 53, 59, 61, 67, 71, 73, 83, 97, 101, 103, 107, 121
Offset: 1
Examples
a(6) = prime(6) - primorial(2) = 13 - 6 = 7.
Links
- Michel Marcus, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
pn=FoldList[Times, 1, Prime[Range[5]]] (* Increase for n>343 *); a[n_]:=Module[{k=1},Until[pn[[k]]>Prime[n],k++];Prime[n]-pn[[k-1]]];Array[a,67] (* James C. McMahon, May 28 2025 *)
-
PARI
a(n) = {my(p=prime(n), q=1, P=1); until (P > p, q = nextprime(q+1); P *= q;); p - P/q;} \\ Michel Marcus, Mar 14 2022
-
Python
from sympy import nextprime from itertools import islice def agen(): # generator of terms pn, primk, pk, pkplus = 2, 2, 2, 3 while True: while primk * pkplus <= pn: primk, pk, pkplus = primk*pkplus, pkplus, nextprime(pkplus) yield pn - primk pn = nextprime(pn) print(list(islice(agen(), 67))) # Michael S. Branicky, Mar 14 2022
Comments