A137387 Triangular sequence from coefficients of the expansion of p(x,t)=Exp[2*x*t]*t/(1 - t).
0, 1, 2, 4, 6, 12, 12, 24, 48, 48, 32, 120, 240, 240, 160, 80, 720, 1440, 1440, 960, 480, 192, 5040, 10080, 10080, 6720, 3360, 1344, 448, 40320, 80640, 80640, 53760, 26880, 10752, 3584, 1024, 362880, 725760, 725760, 483840, 241920, 96768, 32256, 9216
Offset: 1
Examples
{0}, {1}, {2, 4}, {6, 12, 12}, {24, 48, 48, 32}, {120, 240, 240, 160, 80}, {720, 1440, 1440, 960, 480, 192}, {5040, 10080, 10080, 6720, 3360, 1344, 448}, {40320, 80640, 80640, 53760, 26880, 10752, 3584, 1024}, {362880, 725760, 725760, 483840, 241920, 96768, 32256, 9216, 2304}, {3628800, 7257600, 7257600, 4838400, 2419200, 967680, 322560, 92160, 23040,5120}
References
- Terrell Hill, Statistical Mechanics, Dover, 1987, page 417
Crossrefs
Cf. A066534.
Programs
-
Mathematica
p[t_] = Exp[2*x*t]*t/(1 - t); Table[ ExpandAll[n!*SeriesCoefficient[ Series[p[t], {t, 0, 30}], n]], {n, 0, 10}]; a = Table[n!* CoefficientList[SeriesCoefficient[ Series[p[t], {t, 0, 30}], n], x], {n, 0, 10}]; Flatten[a]
Formula
p(x,t)=Exp[2*x*t]*t/(1 - t)=Sum[P(x,n)*t6n/n!,{n,1,Infinity}]; out_n,m=n!*Coefficients(P(x,n)).
Comments