cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A137411 Weak Goodstein sequence starting at 11.

Original entry on oeis.org

11, 30, 67, 127, 217, 343, 511, 636, 775, 928, 1095, 1276, 1471, 1680, 1903, 2139, 2389, 2653, 2931, 3223, 3529, 3849, 4183, 4531, 4893, 5269, 5659, 6063, 6481, 6913, 7359, 7818, 8291, 8778, 9279, 9794, 10323, 10866, 11423, 11994, 12579, 13178
Offset: 0

Views

Author

Nicholas Matteo (kundor(AT)kundor.org), Apr 15 2008

Keywords

Comments

The sequence eventually goes to zero, as can be seen by noting that multiples of the highest exponent (3 in this case) only go down; in fact the 8th term, a(8) = 7*8^2 + 7*8 + 7 = 511; after which the multiple of the square term will only go down, etc.
This sequence, for 11, grows beyond the quintillions of digits before going to zero.
From Zhuorui He, Aug 07 2025: (Start)
For more info see A266201-A266202.
This sequence has A266203(11)+1 terms and a(A266203(11))=0 is the last term of this sequence. The maximum term in this sequence is a((A266203(11)-1)/2)=(A266203(11)+1)/2. 10^^8 < A266203(11) < 10^^9.
More precisely, 10^(10^(10^(10^(10^(10^(10^619.29937)))))) < A266203(11) < 10^(10^(10^(10^(10^(10^(10^619.299371)))))). (End)

Examples

			a(0) = 11 = 2^3 + 2^1 + 2^0
a(1) = 3^3 + 3^1 + 3^0 - 1 = 30
a(2) = 4^3 + 4^1 - 1 = 4^3 + 3*4^0 = 67
		

References

  • K. Hrbacek and T. Jech, Introduction to Set Theory, Taylor & Francis Group, 1999, pp. 125-127.

Crossrefs

Cf. A056004 (strong Goodstein sequences), A059933 (strong Goodstein sequence for 16.).
Weak Goodstein sequences: A267647: g_n(4); A267648: g_n(5); A271987: g_n(6); A271988: g_n(7); A271989: g_n(8); A271990: g_n(9); A271991: g_n(10); A137411: g_n(11); A271992: g_n(16); A265034: g_n(266); A266202: g_n(n); A266203: a(n)=k such that g_k(n)=0;

Programs

  • Mathematica
    nxt[{n_,a_}]:={n+1,FromDigits[IntegerDigits[a,n+1],n+2]-1}; Transpose[ NestList[ nxt,{1,11},50]][[2]] (* Harvey P. Dale, Feb 09 2015 *)
  • PARI
    a(n, m=11) = { my(wn = m); for (k=2, n+1, wn = fromdigits(digits(wn, k), k+1) - 1); wn; } \\ Zhuorui He, Aug 08 2025

Formula

To obtain a(n + 1), write a(n) in base n + 2, increase the base to n + 3 and subtract 1.

Extensions

Offset changed to 0 by Zhuorui He, Aug 07 2025