A137423 Triangle T(n,k) = A053120(n,k)+binomial(n,k) read by rows, 0<=k<=n.
2, 1, 2, 0, 2, 3, 1, 0, 3, 5, 2, 4, -2, 4, 9, 1, 10, 10, -10, 5, 17, 0, 6, 33, 20, -33, 6, 33, 1, 0, 21, 91, 35, -91, 7, 65, 2, 8, -4, 56, 230, 56, -228, 8, 129, 1, 18, 36, -36, 126, 558, 84, -540, 9, 257, 0, 10, 95, 120, -190, 252, 1330, 120, -1235, 10, 513
Offset: 0
Examples
2; 1, 2; 0, 2, 3; 1, 0, 3, 5; 2, 4, -2, 4, 9; 1, 10, 10, -10, 5, 17; 0, 6, 33, 20, -33, 6, 33; 1, 0, 21, 91, 35, -91, 7, 65; 2, 8, -4, 56, 230, 56, -228, 8, 129; 1, 18, 36, -36, 126, 558, 84, -540, 9, 257; 0, 10, 95, 120, -190, 252, 1330, 120, -1235, 10, 513;
Programs
-
Maple
A137423 := proc(n,k) A053120(n,k)+binomial(n,k) end proc: # R. J. Mathar, Sep 10 2013
-
Mathematica
(* Chebyshev A053120 polynomials*) (* addition of coefficients of Polynomials*) Q[x, 0] = 2; Q[x, 1] = x + 1 + ChebyshevT[1, x]; Q[x_, n_] := (x + 1)^n + ChebyshevT[n, x]; Table[ExpandAll[Q[x, n]], {n, 0, 10}]; a0 = Table[CoefficientList[Q[x, n], x], {n, 0, 10}]; Flatten[a0]