A137430 Triangular sequence from coefficients of a cumulative sum of Chebyshev T(x,n) polynomials (A053120): p(x,n)=p(x,n-1)+T(x,n).
1, 1, 1, 0, 1, 2, 0, -2, 2, 4, 1, -2, -6, 4, 8, 1, 3, -6, -16, 8, 16, 0, 3, 12, -16, -40, 16, 32, 0, -4, 12, 40, -40, -96, 32, 64, 1, -4, -20, 40, 120, -96, -224, 64, 128, 1, 5, -20, -80, 120, 336, -224, -512, 128, 256, 0, 5, 30, -80, -280, 336, 896, -512, -1152, 256, 512
Offset: 1
Examples
{1}, {1, 1}, {0, 1, 2}, {0, -2, 2, 4}, {1, -2, -6, 4, 8}, {1, 3, -6, -16, 8, 6}, {0, 3, 12, -16, -40, 16, 32}, {0, -4, 12, 40, -40, -96, 32, 64}, {1, -4, -20, 40, 120, -96, -224, 64, 128}, {1, 5, -20, -80, 120, 336, -224, -512, 128, 256}, {0, 5, 30, -80, -280, 336,896, -512, -1152, 256, 512}
Crossrefs
Cf. A053120.
Programs
-
Mathematica
Clear[P] P[x, -1] = 0; P[x, 0] = 1; P[x_, n_] := P[x, n] = P[x, n - 1] + ChebyshevT[n, x]; Table[P[x, n], {n, 0, 10}]; a = Table[CoefficientList[P[x, n], x], {n, 0, 10}]; Flatten[a]
Formula
p(x,n)=p(x,n-1)+T(x,n); out_n,m=Coefficients(p(x,n)).
Comments