A137484 Numbers with 21 divisors.
576, 1600, 2916, 3136, 7744, 10816, 18225, 18496, 23104, 33856, 35721, 53824, 61504, 62500, 87616, 88209, 107584, 118336, 123201, 140625, 141376, 179776, 210681, 222784, 238144, 263169, 287296, 322624, 341056, 385641, 399424, 440896
Offset: 1
Keywords
Links
- T. D. Noe, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
Select[Range[450000],DivisorSigma[0,#]==21&] (* Vladimir Joseph Stephan Orlovsky, May 03 2011 *)
-
PARI
is(n)=numdiv(n)==21 \\ Charles R Greathouse IV, Jun 19 2016
-
Python
from math import isqrt from sympy import primepi, primerange, integer_nthroot def A137484(n): def bisection(f,kmin=0,kmax=1): while f(kmax) > kmax: kmax <<= 1 kmin = kmax >> 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax def f(x): return n+x-sum(primepi(isqrt(x//p**6)) for p in primerange(integer_nthroot(x,6)[0]+1))+primepi(integer_nthroot(x,8)[0])-primepi(integer_nthroot(x,20)[0]) return bisection(f,n,n) # Chai Wah Wu, Feb 21 2025
Formula
A000005(a(n)) = 21.
Sum_{n>=1} 1/a(n) = P(2)*P(6) - P(8) + P(20) = 0.00365945..., where P is the prime zeta function. - Amiram Eldar, Jul 03 2022
Comments