cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A137484 Numbers with 21 divisors.

Original entry on oeis.org

576, 1600, 2916, 3136, 7744, 10816, 18225, 18496, 23104, 33856, 35721, 53824, 61504, 62500, 87616, 88209, 107584, 118336, 123201, 140625, 141376, 179776, 210681, 222784, 238144, 263169, 287296, 322624, 341056, 385641, 399424, 440896
Offset: 1

Views

Author

R. J. Mathar, Apr 22 2008

Keywords

Comments

Maple implementation: see A030513.
Numbers of the form p^20 or p^2*q^6 (A189990) where p and q are distinct primes. - R. J. Mathar, Mar 01 2010

Crossrefs

Cf. A000005, A030513, A030638 (20 divisors), A137485 (22 divisors), A189990.

Programs

  • Mathematica
    Select[Range[450000],DivisorSigma[0,#]==21&] (* Vladimir Joseph Stephan Orlovsky, May 03 2011 *)
  • PARI
    is(n)=numdiv(n)==21 \\ Charles R Greathouse IV, Jun 19 2016
    
  • Python
    from math import isqrt
    from sympy import primepi, primerange, integer_nthroot
    def A137484(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return n+x-sum(primepi(isqrt(x//p**6)) for p in primerange(integer_nthroot(x,6)[0]+1))+primepi(integer_nthroot(x,8)[0])-primepi(integer_nthroot(x,20)[0])
        return bisection(f,n,n) # Chai Wah Wu, Feb 21 2025

Formula

A000005(a(n)) = 21.
Sum_{n>=1} 1/a(n) = P(2)*P(6) - P(8) + P(20) = 0.00365945..., where P is the prime zeta function. - Amiram Eldar, Jul 03 2022