cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A137509 a(1)=2. For n >= 2, a(n) = the smallest integer > a(n-1) that has the same multiset of prime-factorization exponents as n has.

Original entry on oeis.org

2, 3, 5, 9, 11, 14, 17, 27, 49, 51, 53, 63, 67, 69, 74, 81, 83, 92, 97, 98, 106, 111, 113, 135, 169, 177, 343, 356, 359, 366, 367, 3125, 3127, 3131, 3133, 3249, 3251, 3254, 3261, 3272, 3299, 3302, 3307, 3308, 3316, 3317, 3319, 3321, 3481, 3501, 3503, 3508
Offset: 1

Views

Author

Leroy Quet, Apr 23 2008

Keywords

Comments

Starting the sequence at a(1)=1 instead leads to a(n) = n for every positive integer n.

Examples

			12 = 2^2 * 3^1. So the multiset of exponents in the prime factorization of 12 is {1,2}. For a(12), we want the smallest integer > a(11)=53 of the form p^1 * q^2, where p and q are distinct primes. Checking: 54 = 2^1 *3^3, so 54 fails. 55 = 5^1*11^1. 56 = 2^3*7^1. 57 = 3^1*19^1. 58 = 2^1*29^1. 59=59^1. 60 = 2^2*3^1*5^1. 61 = 61^1. 62 = 2^1 *31^1. So 54 through 62 all fail. But 63 = 3^2 * 7^1, which has the same multiset of prime exponents, {1,2}, as 12 has. Therefore a(12) = 63.
		

Crossrefs

Cf. A081761.

Programs

  • Maple
    pmset := proc(n) local e,a ; a := [] ; for e in ifactors(n)[2] do a := [op(a),e[2]] ; od: sort(a) ; end: A137509 := proc(n) option remember ; local nset,a ; if n = 1 then RETURN(2) ; fi ; nset := pmset(n) ; for a from A137509(n-1)+1 do if pmset(a) = nset then RETURN(a) ; fi ; od: end: seq(A137509(n),n=1..120) ; # R. J. Mathar, May 23 2008
  • Mathematica
    s={2};Do[fe=Sort[Last/@FactorInteger[n]];k=s[[-1]]+1;While[Sort[Last/@FactorInteger[k]]!=fe,k++];AppendTo[s,k],{n,2,52}];s (* James C. McMahon, May 30 2025 *)
  • PARI
    lista(nn) = my(va = vector(nn)); va[1] = 2; for (n=2, nn, my(k=va[n-1]+1, f=vecsort(factor(n)[,2])); while (vecsort(factor(k)[,2]) != f, k++); va[n] = k;); va; \\ Michel Marcus, May 30 2025

Extensions

More terms from R. J. Mathar, May 23 2008