A137524 Triangular sequence from coefficients of the umbral calculus expansion of a Golden -Mean Bernoulli function(A001898): p(x,t)=t*phi^(x*t)/(phi^t - 1), where the golden ratio replaces "e".
2, -3, 6, 4, -24, 24, 0, 60, -180, 120, -24, 0, 720, -1440, 720, 0, -840, 0, 8400, -12600, 5040, 960, 0, -20160, 0, 100800, -120960, 40320, 0, 60480, 0, -423360, 0, 1270080, -1270080, 362880, -120960, 0, 2419200, 0, -8467200, 0, 16934400, -14515200, 3628800, 0, -11975040, 0, 79833600, 0, -167650560, 0
Offset: 1
Examples
{2}, {-3, 6}, {4, -24, 24}, {0, 60, -180, 120}, {-24, 0, 720, -1440, 720}, {0, -840, 0, 8400, -12600, 5040}, {960, 0, -20160, 0, 100800, -120960, 40320}, {0, 60480, 0, -423360, 0, 1270080, -1270080, 362880}, {-120960, 0, 2419200, 0, -8467200, 0, 16934400, -14515200, 3628800}, {0, -11975040, 0, 79833600, 0, -167650560, 0, 239500800, -179625600, 39916800}, {36288000, 0, -718502400, 0, 2395008000, 0, -3353011200, 0, 3592512000, -2395008000, 479001600}
Crossrefs
Cf. A001898.
Programs
-
Mathematica
p[t_]=t*GoldenRatio^(x*t)/(GoldenRatio^t-1); Table[ ExpandAll[((n+2)!*n!/Log[GoldenRatio]^(n-1))*SeriesCoefficient[ Series[p[t],{t,0,30}],n]],{n,0,10}]; a=Table[ CoefficientList[((n+2)!*n!/Log[GoldenRatio]^(n-1))*SeriesCoefficient[ Series[p[t],{t,0,30}],n],x],{n,0,10}]; Flatten[a] Table[Apply[Plus,CoefficientList[((n+2)!*n!/Log[GoldenRatio]^(n-1))*SeriesCoefficient[ Series[p[t],{t,0,30}],n],x]],{n,0,10}];
Comments