cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A137615 Decimal expansion of volume of the Meissner Body.

Original entry on oeis.org

4, 1, 9, 8, 6, 0, 0, 4, 5, 9, 6, 5, 0, 8, 0, 2, 2, 3, 3, 4, 2, 1, 3, 0, 0, 0, 0, 9, 6, 8, 3, 3, 8, 2, 7, 9, 1, 6, 5, 0, 7, 0, 3, 3, 5, 0, 8, 8, 6, 5, 1, 2, 1, 8, 5, 3, 1, 9, 4, 5, 1, 2, 3, 5, 8, 5, 9, 5, 0, 8, 3, 2, 4, 2, 3, 7, 9, 8, 3, 2, 2, 2, 4, 6, 5, 4, 2, 4, 9, 4, 4, 8, 4, 0, 2, 1, 2, 5, 2, 5, 2
Offset: 0

Views

Author

Christof Weber, Feb 04 2008

Keywords

Comments

The Meissner body is a three-dimensional generalization of the Reuleaux triangle having constant width 1. Although it is based on the Reuleaux tetrahedron, it is different from that. The Meissner body exists in two different versions.

Examples

			0.41986004596508022334213000096833827916507033508865...
		

References

  • Johannes Boehm and E. Quaisser, Schoenheit und Harmonie geometrischer Formen - Sphaeroformen und symmetrische Koerper, Berlin: Akademie Verlag (1991), p. 71.
  • G. D. Chakerian and H. Groemer, Convex Bodies of Constant Width, in: P. Gruber and J. Wills (Editors), Convexity and its Applications, Basel / Boston / Stuttgart: Birkhäuser (1983), p. 68.
  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 8.10 Reuleaux Triangle Constants, p. 513.

Crossrefs

Programs

  • Mathematica
    RealDigits[(2/3 - Sqrt[3]/4 * ArcCos[1/3])* Pi, 10, 120][[1]] (* Amiram Eldar, May 27 2023 *)

Formula

Equals (2/3 - sqrt(3)/4 * arccos(1/3))* Pi.