cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A137636 a(n) = Sum_{k=0..n} C(2k+1,k)*C(2k+1,n-k) ; equals row 1 of square array A137634; also equals the convolution of A137635 and A073157.

Original entry on oeis.org

1, 4, 19, 94, 474, 2431, 12609, 65972, 347524, 1840680, 9792986, 52296799, 280163091, 1504969409, 8103433329, 43722788132, 236340999038, 1279602656590, 6938126362948, 37668424608552, 204751452911832, 1114151447523038
Offset: 0

Views

Author

Paul D. Hanna, Jan 31 2008

Keywords

Crossrefs

Programs

  • PARI
    {a(n)=sum(k=0,n,binomial(2*k+1,k)*binomial(2*k+1,n-k))} /* Using the g.f.: */ {a(n)=local(R=1/sqrt(1-4*x*(1+x +x*O(x^n))^2), G=(1-sqrt(1-4*x*(1+x)^2+x^2*O(x^n)))/(2*x*(1+x+x*O(x^n)))); polcoeff(R*G,n,x)}

Formula

G.f.: A(x) = R(x)*G(x), where R(x) = 1/sqrt(1-4x(1+x)^2) is the g.f. of A137635 and G(x) = (1-sqrt(1-4x(1+x)^2))/(2x(1+x)) is the g.f. of A073157.
D-finite with recurrence (n+1)*a(n) +(-3*n-1)*a(n-1) +2*(-6*n-1)*a(n-2) +2*(-6*n+1)*a(n-3) +2*(-2*n+1)*a(n-4)=0. - R. J. Mathar, Jun 23 2023
a(n) ~ sqrt((172 + (86*(78905 - 519*sqrt(129)))^(1/3) + (86*(78905 + 519*sqrt(129)))^(1/3))/129) * ((4 + (262 - 6*sqrt(129))^(1/3) + (2*(131 + 3*sqrt(129)))^(1/3))/3)^n / sqrt(Pi*n). - Vaclav Kotesovec, Nov 25 2023