A137637 a(n) = Sum_{k=0..n} C(2k+2,k)*C(2k+2,n-k) ; equals row 2 of square array A137634 ; also equals the convolution of A137635 and the self-convolution of A073157.
1, 6, 32, 170, 899, 4764, 25318, 134964, 721562, 3868024, 20785035, 111931154, 603938905, 3264309644, 17671408012, 95800342628, 520022296700, 2826089180652, 15374990077568, 83727902852188, 456370687687082
Offset: 0
Keywords
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..1000
Programs
-
PARI
{a(n)=sum(k=0,n,binomial(2*k+2,k)*binomial(2*k+2,n-k))} /* Using the g.f.: */ {a(n)=local(R=1/sqrt(1-4*x*(1+x +x*O(x^n))^2), G=(1-sqrt(1-4*x*(1+x)^2+x^2*O(x^n)))/(2*x*(1+x+x*O(x^n)))); polcoeff(R*G^2,n,x)}