cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A137638 Antidiagonal sums of square array A137634.

Original entry on oeis.org

1, 3, 15, 72, 361, 1840, 9505, 49578, 260540, 1377328, 7316373, 39020372, 208809544, 1120621368, 6029023185, 32507001876, 175604614108, 950233307930, 5149691511432, 27946158749572, 151843410356906, 825949622559366
Offset: 0

Views

Author

Paul D. Hanna, Jan 31 2008

Keywords

Crossrefs

Programs

  • PARI
    {a(n)=sum(k=0,n,sum(j=0,k,binomial(2*j+n-k,j)*binomial(2*j+n-k,k-j)))} /* Using the g.f.: */ {a(n)=local(G=sqrt(1 - 4*x*(1+x)^2 +x*O(x^n))); polcoeff(2*(1+x)/((1+2*x+G)*G),n)}

Formula

G.f.: A(x) = 2*(1+x)/((1+2*x + G(x))*G(x)) where G(x) = sqrt(1 - 4*x*(1+x)^2).
a(n) = Sum_{k=0..n} Sum_{j=0..k} C(n-k+2*j,j)*C(n-k+2*j,k-j).
D-finite with recurrence 2*(n+1)*a(n) +(-3*n-7)*a(n-1) +2*(-17*n+10)*a(n-2) +8*(-7*n+10)*a(n-3) +2*(-18*n+37)*a(n-4) +4*(-2*n+5)*a(n-5)=0. - R. J. Mathar, Jun 23 2023