A137650 Triangle read by rows, A008277 * A000012.
1, 2, 1, 5, 4, 1, 15, 14, 7, 1, 52, 51, 36, 11, 1, 203, 202, 171, 81, 16, 1, 877, 876, 813, 512, 162, 22, 1, 4140, 4139, 4012, 3046, 1345, 295, 29, 1, 21147, 21146, 20891, 17866, 10096, 3145, 499, 37, 1, 115975, 115974, 115463
Offset: 1
Examples
First few rows of the triangle are 1; 2, 1; 5, 4, 1; 15, 14, 7, 1; 52, 51, 36, 11, 1; 203, 202, 171, 81, 16, 1; 877, 876, 813, 512, 162, 22, 1; ...
Programs
-
Maple
A137650_row := proc(n) local k,i; add(add(combinat[stirling2](n, n-i), i=0..k)*x^(n-k-1),k=0..n-1); seq(coeff(%,x,k),k=0..n-1) end: seq(print(A137650_row(n)),n=1..7); # Peter Luschny, Sep 18 2011
-
Mathematica
row[n_] := Table[StirlingS2[n, k], {k, 0, n}] // Reverse // Accumulate // Reverse // Rest; Array[row, 10] // Flatten (* Jean-François Alcover, Dec 07 2019 *)
Comments