cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A137674 Numbers m such that A137671(m) = 1.

Original entry on oeis.org

1, 2, 5, 13, 35, 84, 198, 414, 960, 1898, 4263, 8556, 18473, 37490, 79526, 159956, 338873, 680306, 1438941, 2869908, 6057397, 12038460, 25300258, 50460684, 105275708, 211424744, 437486956, 879869316, 1810901110, 3642407379, 7495644753, 15038540180, 30957576741
Offset: 1

Views

Author

Reinhard Zumkeller, Feb 05 2008

Keywords

Crossrefs

Programs

  • C
    See Links section.
  • Mathematica
    b[1] = 1; b[n_] := b[n] = Count[Array[s, n - 1], s[n - 1]]; s[n_] := s[n] = DigitCount[b[n], 2, 1]; Select[Range[10000], b[#] == 1 &] (* Amiram Eldar, Jul 27 2023 *)

Formula

A137671(a(n)) = 1.
A137672(a(n)) = 1.
For n > 1: A137671(a(n)-1) = 2^(n-1)-1 = A000225(n-1), A137672(a(n)-1) = n-1, and a(n) = A137673(A137671(a(n)-1)) + 1.

Extensions

More terms from Rémy Sigrist, Jun 28 2019

A137672 Number of ones in binary representation of A137671(n).

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 2, 1, 2, 2, 1, 3, 1, 1, 2, 2, 2, 3, 1, 2, 1, 3, 2, 2, 2, 3, 1, 2, 2, 3, 2, 3, 2, 4, 1, 3, 3, 1, 3, 2, 1, 4, 1, 1, 2, 2, 2, 3, 2, 2, 3, 3, 2, 3, 3, 3, 4, 2, 4, 1, 2, 2, 3, 1, 3, 2, 3, 2, 4, 2, 3, 3, 2, 4, 2, 4, 3, 3, 3, 4, 1, 2, 5, 1, 3, 2, 1, 3, 3, 3, 4, 2, 2, 2, 3, 3, 4, 2, 2, 3, 4, 3, 5, 1, 4
Offset: 1

Views

Author

Reinhard Zumkeller, Feb 05 2008

Keywords

Crossrefs

Programs

  • Mathematica
    b[1] = 1; b[n_] := b[n] = Count[Array[a, n-1], a[n-1]]; a[n_] := a[n] = DigitCount[b[n], 2, 1]; Array[a, 100] (* Amiram Eldar, Jul 27 2023 *)

Formula

a(n) = A000120(A137671(n)).
a(A137674(n)) = 1.
a(A137674(n)-1) = n-1.

A137673 Smallest m such that A137671(m) = n.

Original entry on oeis.org

1, 3, 4, 6, 7, 9, 12, 14, 15, 20, 22, 28, 30, 32, 34, 41, 45, 47, 48, 50, 51, 54, 59, 62, 63, 67, 69, 71, 74, 76, 83, 87, 93, 94, 95, 99, 100, 107, 110, 113, 114, 116, 119, 128, 133, 135, 140, 142, 143, 150, 153, 155, 156, 161, 163, 166, 167, 170, 183, 186, 188, 191
Offset: 1

Views

Author

Reinhard Zumkeller, Feb 05 2008

Keywords

Crossrefs

Programs

  • Mathematica
    b[1] = 1; b[n_] := b[n] = Count[Array[s, n - 1], s[n - 1]]; s[n_] := s[n] = DigitCount[b[n], 2, 1]; seq[len_, nmax_] := Module[{t = Table[0, {len}], c = 0, n = 1, i}, While[c < len && n < nmax, i = b[n]; If[t[[i]] == 0, c++; t[[i]] = n]; n++]; t]; seq[100, 1000] (* Amiram Eldar, Jul 27 2023 *)

Formula

A137671(a(n)) = n and A137671(m) < n for m < a(n).
A137674(n) = a(A137671(A137674(n)-1)) + 1.

A356348 a(0) = 0; for n > 0, a(n) is the number of preceding terms having the same digit sum as a(n-1).

Original entry on oeis.org

0, 1, 1, 2, 1, 3, 1, 4, 1, 5, 1, 6, 1, 7, 1, 8, 1, 9, 1, 10, 11, 2, 3, 2, 4, 2, 5, 2, 6, 2, 7, 2, 8, 2, 9, 2, 10, 12, 3, 4, 3, 5, 3, 6, 3, 7, 3, 8, 3, 9, 3, 10, 13, 4, 5, 4, 6, 4, 7, 4, 8, 4, 9, 4, 10, 14, 5, 6, 5, 7, 5, 8, 5, 9, 5, 10, 15, 6, 7, 6, 8, 6, 9, 6, 10, 16, 7, 8, 7, 9, 7, 10, 17, 8, 9
Offset: 0

Views

Author

Scott R. Shannon, Oct 15 2022

Keywords

Examples

			a(21) = 2 as a(20) = 11 which has a digit sum of 2, and there has been two previous terms with a digit sum of two: a(3) = 2 and a(20) = 11.
		

Crossrefs

Cf. A007953, A137671 (base 2), A342585.

Programs

Showing 1-4 of 4 results.