A137676 Expansion of f(-x^2, -x^3) / f(-x, -x^3) in powers of x where f(, ) is Ramanujan's general theta function.
1, 1, 0, 0, 1, 1, 0, 0, 1, 2, 0, 0, 2, 2, 0, 0, 3, 3, 0, 0, 4, 4, 0, 0, 5, 6, 0, 0, 7, 7, 0, 0, 9, 10, 0, 0, 12, 12, 0, 0, 15, 16, 0, 0, 19, 20, 0, 0, 24, 26, 0, 0, 30, 31, 0, 0, 37, 40, 0, 0, 46, 48, 0, 0, 57, 60, 0, 0, 69, 72, 0, 0, 84, 89, 0, 0, 102, 106, 0
Offset: 0
Keywords
Examples
G.f. = 1 + x + x^4 + x^5 + x^8 + 2*x^9 + 2*x^12 + 2*x^13 + 3*x^16 + 3*x^17 + ... G.f. = 1/q + q^9 + q^39 + q^49 + q^79 + 2*q^89 + 2*q^119 + 2*q^129 + 3*q^159 + ...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- G. E. Andrews, q-series, CBMS Regional Conference Series in Mathematics, 66, Amer. Math. Soc. 1986, see p. 36, Eq. (4.11). MR0858826 (88b:11063).
- Michael Somos, Introduction to Ramanujan theta functions
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
Programs
-
Mathematica
a[ n_] := SeriesCoefficient[ QPochhammer[ x^2] / (QPochhammer[ x^4] QPochhammer[ x, x^5] QPochhammer[ x^4, x^5]), {x, 0, n}]; (* Michael Somos, Oct 08 2015 *) a[ n_] := If[ n < 0, 0, SeriesCoefficient[ Sum[ x^(k^2) / QPochhammer[ x^4, x^4, k], {k, 0, Sqrt @ n}], {x, 0, n}]]; (* Michael Somos, Oct 08 2015 *) a[ n_] := SeriesCoefficient[ Sqrt[2] x^(1/8) QPochhammer[ x^2, x^5] QPochhammer[ x^3, x^5] QPochhammer[ x^5] / EllipticTheta[ 2, Pi/4, x^(1/2)], {x, 0, n}]; (* Michael Somos, Oct 08 2015 *)
-
PARI
{a(n) = if( n<0, 0, polcoeff( sum(k=0, sqrtint(n), x^k^2 / prod(i=1, k, 1 - x^(4*i), 1 + x * O(x^(n - k^2)))), n))};
Formula
Expansion of f(-x^2) * f(-x^5) / (f(-x^4) * f(-x, -x^4)) in powers of x where f(, ) is Ramanujan's general theta function.
Expansion of (f(-x^13, -x^17) + x * f(-x^7, -x^23)) / f(-x^4) in powers of x where f(, ) is Ramanujan's general theta function.
Euler transform of period 20 sequence [ 1, -1, 0, 1, 0, 0, 0, 0, 1, -1, 1, 0, 0, 0, 0, 1, 0, -1, 1, 0, ...].
G.f.: Sum_{k>=0} x^k^2 / (Product_{j=1..k} 1 - x^(4*j)).
G.f.: (Sum_{k in Z} (-1)^k^2 * x^(k * (5*k + 1) / 2)) / (Sum_{k in Z} (-1)^k^2 * x^(k * (2*k + 1))). - Michael Somos, Oct 08 2015
Comments