cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A137676 Expansion of f(-x^2, -x^3) / f(-x, -x^3) in powers of x where f(, ) is Ramanujan's general theta function.

Original entry on oeis.org

1, 1, 0, 0, 1, 1, 0, 0, 1, 2, 0, 0, 2, 2, 0, 0, 3, 3, 0, 0, 4, 4, 0, 0, 5, 6, 0, 0, 7, 7, 0, 0, 9, 10, 0, 0, 12, 12, 0, 0, 15, 16, 0, 0, 19, 20, 0, 0, 24, 26, 0, 0, 30, 31, 0, 0, 37, 40, 0, 0, 46, 48, 0, 0, 57, 60, 0, 0, 69, 72, 0, 0, 84, 89, 0, 0, 102, 106, 0
Offset: 0

Views

Author

Michael Somos, Feb 04 2008

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + x + x^4 + x^5 + x^8 + 2*x^9 + 2*x^12 + 2*x^13 + 3*x^16 + 3*x^17 + ...
G.f. = 1/q + q^9 + q^39 + q^49 + q^79 + 2*q^89 + 2*q^119 + 2*q^129 + 3*q^159 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ x^2] / (QPochhammer[ x^4] QPochhammer[ x, x^5] QPochhammer[ x^4, x^5]), {x, 0, n}]; (* Michael Somos, Oct 08 2015 *)
    a[ n_] := If[ n < 0, 0, SeriesCoefficient[ Sum[ x^(k^2) / QPochhammer[ x^4, x^4, k], {k, 0, Sqrt @ n}], {x, 0, n}]]; (* Michael Somos, Oct 08 2015 *)
    a[ n_] := SeriesCoefficient[ Sqrt[2] x^(1/8) QPochhammer[ x^2, x^5] QPochhammer[ x^3, x^5] QPochhammer[ x^5] / EllipticTheta[ 2, Pi/4, x^(1/2)], {x, 0, n}]; (* Michael Somos, Oct 08 2015 *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( sum(k=0, sqrtint(n), x^k^2 / prod(i=1, k, 1 - x^(4*i), 1 + x * O(x^(n - k^2)))), n))};

Formula

Expansion of f(-x^2) * f(-x^5) / (f(-x^4) * f(-x, -x^4)) in powers of x where f(, ) is Ramanujan's general theta function.
Expansion of (f(-x^13, -x^17) + x * f(-x^7, -x^23)) / f(-x^4) in powers of x where f(, ) is Ramanujan's general theta function.
Euler transform of period 20 sequence [ 1, -1, 0, 1, 0, 0, 0, 0, 1, -1, 1, 0, 0, 0, 0, 1, 0, -1, 1, 0, ...].
G.f.: Sum_{k>=0} x^k^2 / (Product_{j=1..k} 1 - x^(4*j)).
a(4*n) = A122129(n). a(4*n + 1) = A122135(n). a(4*n + 2) = a(4*n + 3) = 0.
G.f.: (Sum_{k in Z} (-1)^k^2 * x^(k * (5*k + 1) / 2)) / (Sum_{k in Z} (-1)^k^2 * x^(k * (2*k + 1))). - Michael Somos, Oct 08 2015