A137712 Triangle read by rows: T(n,k) = T(n-1, k-1) - T(n-k, k-1); with left border = the Fibonacci sequence.
1, 1, 1, 2, 0, 1, 3, 1, 0, 1, 5, 1, 0, 0, 1, 8, 2, 1, 0, 0, 1, 13, 3, 1, 0, 0, 0, 1, 21, 5, 2, 1, 0, 0, 0, 1, 34, 8, 3, 2, 0, 0, 0, 0, 1, 55, 13, 5, 2, 2, 0, 0, 0, 0, 1, 89, 21, 8, 4, 2, 1, 0, 0, 0, 0, 1, 144, 34, 13, 6, 4, 2, 1, 0, 0, 0, 0, 1, 233, 55, 21, 10, 5, 4, 1, 1, 0, 0, 0, 0, 1
Offset: 1
Examples
First few rows of the triangle: 1; 1, 1; 2, 0, 1; 3, 1, 0, 1; 5, 1, 0, 0, 1; 8, 2, 1, 0, 0, 1; 13, 3, 1, 0, 0, 0, 1; 21, 5, 2, 1, 0, 0, 0, 1; 34, 8, 3, 2, 0, 0, 0, 0, 1; 55, 13, 5, 2, 2, 0, 0, 0, 0, 1; 89, 21, 8, 4, 2, 1, 0, 0, 0, 0, 1; 144, 34, 13, 6, 4, 2, 1, 0, 0, 0, 0, 1; 233, 55, 21, 10, 5, 4, 1, 1, 0, 0, 0, 0, 1; 377, 89, 34, 16, 8, 5, 4, 1, 1, 0, 0, 0, 0, 1; ...
Links
- Robert Israel, Table of n, a(n) for n = 1..10011(rows 1 to 141, flattened)
Programs
-
Maple
for n from 1 to 20 do T[n,1]:= combinat:-fibonacci(n); for k from 2 to n do if n >= 2*k-1 then T[n,k]:= T[n-1,k-1] - T[n-k,k-1] else T[n,k]:= T[n-1,k-1] fi od: od: seq(seq(T[n,k],k=1..n),n=1..20); # Robert Israel, Aug 20 2018
Formula
T(n,k) = T(n-1, k-1) - T(n-k, k-1), given left border = (1, 1, 2, 3, 5, 8, 13, ...).
Here T(n,k) = T(n-1,k-1) if n-k < k-1. - Robert Israel, Aug 20 2018
Extensions
Corrected by Robert Israel, Aug 20 2018
Comments