cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A137731 Repeated set splitting, labeled elements.

Original entry on oeis.org

1, 1, 2, 7, 40, 355, 4720, 91690, 2559980, 101724390, 5724370860, 455400049575, 51225573119870, 8155535394029685, 1840116104410154380, 589128078915179209630, 267942956094193363173030, 173296035183231212307098790, 159532934947213401229226873410
Offset: 1

Views

Author

Thomas Wieder, Feb 09 2008

Keywords

Comments

Consider a set of n labeled elements. Form all splittings into two subsets. Consider the resulting sets and perform the splittings on all their subsets and so on. a(n+1) = number of splittings of the n-set {1,2,3,...,n}.
E.g., a(4) = 7 because we have {abc}, {ab}{c}, {ac}{b}, {bc}{a}, {{a}{b}}{c}, {{a}{c}}{b}, {{b}{c}}{a}. The case for unlabeled elements is described by A137732. This structure is related to the Double Factorials A000142 for which the recurrence is a(n) = Sum_{k=1..n-1} C(n-1,k)*a(k)*a(n-k) with a(1)=1, a(2)=1.
See also A137591 = Number of parenthesizings of products formed by n factors assuming noncommutativity and nonassociativity. See also the Catalan numbers A000108.

Examples

			{a}.
{ab}, {a}{b}.
{abc}, {ab}{c}, {ac}{b}, {bc}{a}, {{a}{b}}{c}, {{a}{c}}{b}, {{b}{c}}{a}.
{abcd}, {abc}{d}, {abd}{c}, {acd}{b}, {bcd}{a},
{{ab}{c}}{d}, {{ab}{d}}{c}, {{ac}{d}}{b}, {{bc}{d}}{a},
{{ac}{b}}{d}, {{ad}{b}}{c}, {{ad}{c}}{b}, {{bd}{c}}{a},
{{bc}{a}}{d}, {{bd}{a}}{c}, {{cd}{a}}{b}, {{cd}{b}}{a},
{{{a}{b}}{c}}{d}, {{{a}{b}}{d}}{c}, {{{a}{c}}{d}}{b}, {{{b}{c}}{d}}{a},
{{{a}{c}}{b}}{d}, {{{a}{d}}{b}}{c}, {{{a}{d}}{c}}{b}, {{{b}{d}}{c}}{a},
{{{b}{c}}{a}}{d}, {{{b}{d}}{a}}{c}, {{{c}{d}}{a}}{b}, {{{c}{d}}{b}}{a},
{{ab}{cd}}, {{ac}{bd}}, {{ad}{bc}},
{{{a}{b}}{cd}}, {{{a}{c}}{bd}}, {{{a}{d}}{bc}},
{{ab}{{c}{d}}}, {{ac}{{b}{d}}}, {{ad}{{b}{c}}},
{{{a}{b}}{{c}{d}}}, {{{a}{c}}{{b}{d}}}, {{{a}{d}}{{b}{c}}}.
		

Crossrefs

Programs

  • Maple
    A137731 := proc(n) option remember ; local k ; if n = 1 then 1; else add(combinat[stirling2](n-1,k)*procname(k)*procname(n-k),k=1..n-1) ; fi; end: for n from 1 to 20 do printf("%d,",A137731(n)) ; od: # R. J. Mathar, Aug 25 2008
  • Mathematica
    a[1] = 1; a[n_] := a[n] = Sum[StirlingS2[n-1, k]*a[k]*a[n-k], {k, 1, n-1}]; Array[a, 20] (* Jean-François Alcover, May 18 2018 *)
  • Python
    from functools import cache
    from sympy.functions.combinatorial.numbers import stirling as S2
    @cache
    def a(n): return sum(S2(n-1,k)*a(k)*a(n-k) for k in range(1, n)) if n > 1 else 1
    print([a(n) for n in range(1, 21)]) # Michael S. Branicky, May 05 2023

Formula

a(n) = Sum_{k=1..n-1} S2(n-1,k)*a(k)*a(n-k) with a(1)=1, where S2(n,k) denotes the Stirling numbers of the second kind.

Extensions

Extended by R. J. Mathar, Aug 25 2008