A137732 Repeated set splitting, unlabeled elements. Repeated integer partitioning into two parts.
1, 1, 2, 5, 16, 55, 224, 935, 4400, 21262, 111624, 596805, 3457354, 20147882, 125455512, 792576243, 5277532388, 35519373064, 252120178596, 1800810613940, 13492153025558, 102095379031327, 804122472505530, 6395239610004277
Offset: 1
Keywords
Examples
(1) (2), (1,1). (3), (2,1), (1,2), ((1,1),1), (1,(1,1)). (4), (3,1), (1,3), ((2,1),1), (1,(2,1)), ((1,2),1), (1,(1,2)), (((1,1),1),1), (1,((1,1),1)), ((1,(1,1)),1), (1,(1,(1,1))), (2,2), ((1,1),2), (2,(1,1)), ((1,1),(1,1)), ((1,1),(1,1)). Observe that for (4) we obtain ((1,1),(1,1)), ((1,1),(1,1)) twice.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..250
Programs
-
Maple
A008284 := proc(n,k) combinat[numbpart](n,k)-combinat[numbpart](n,k-1) ; end: A137732 := proc(n) option remember ; local i ; if n =1 then 1; else add(A008284(n-1,k)*procname(k)*procname(n-k),k=1..n-1) ; fi ; end: for n from 1 to 40 do printf("%d,",A137732(n)) ; od: # R. J. Mathar, Aug 25 2008
-
Mathematica
p[, 1] = 1; p[n, k_] /; 1 <= k <= n := p[n, k] = Sum[p[n-i, k-1], {i, 1, n-1}] - Sum[p[n-i, k], {i, 1, k-1}]; p[, ] = 0; a[1] = 1; a[n_] := a[n] = Sum[p[n-1, k]*a[k]*a[n-k], {k, 1, n-1}]; Table[Print["a(", n, ") = ", a[n]]; a[n], {n, 1, 40}] (* Jean-François Alcover, Feb 03 2017 *)
Formula
a(n) = Sum_{k=1..n-1} p(n-1,k)*a(k)*a(n-k), with a(1)=1 and where p(n,k) denotes the number of integer partitions of n into k parts.
Extensions
Extended by R. J. Mathar, Aug 25 2008
Comments