A137773 Triangular sequence: The Fibonacci sequence on the diagonal, 1's at all other places.
0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 13, 1, 1, 1, 1, 1, 1, 1, 1, 21, 1, 1, 1, 1, 1, 1, 1, 1, 1, 34, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 55
Offset: 1
Examples
0; 1, 1; 1, 1, 1; 1, 1, 1, 2; 1, 1, 1, 1, 3; 1, 1, 1, 1, 1, 5; 1, 1, 1, 1, 1, 1, 8; 1, 1, 1, 1, 1, 1, 1, 13; 1, 1, 1, 1, 1, 1, 1, 1, 21; 1, 1, 1, 1, 1, 1, 1, 1, 1, 34; 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 55;
Programs
-
Mathematica
Table[Table[If[n == m, Fibonacci[n], 1], {n, 0, m}], {m, 0, 10}]; Flatten[%] Table[Apply[Plus, Table[If[n == m, Fibonacci[n], 1], {n, 0, m}]], {m, 0, 10}];
Formula
t(n,m)=If[n == m, Fibonacci[n], 1].