A137812 Left- or right-truncatable primes.
2, 3, 5, 7, 13, 17, 23, 29, 31, 37, 43, 47, 53, 59, 67, 71, 73, 79, 83, 97, 113, 131, 137, 139, 167, 173, 179, 197, 223, 229, 233, 239, 271, 283, 293, 311, 313, 317, 331, 337, 347, 353, 359, 367, 373, 379, 383, 397, 431, 433, 439, 443, 467, 479, 523, 547, 571
Offset: 1
Examples
139 is here because (removing 9 from the right) 13 is prime and (removing 1 from the left) 3 is prime.
Links
- T. D. Noe, Table of n, a(n) for n = 1..10000
- I. O. Angell and H. J. Godwin, On Truncatable Primes, Math. Comput. 31, 265-267, 1977.
- T. D. Noe, Plot of all terms
- Carlos Rivera, Puzzle 2: Prime Strings, The Prime Puzzles and Problems Connection.
- Daniel Starodubtsev, Full sequence
- Eric Weisstein, MathWorld: Truncatable Prime
- Index entries for sequences related to truncatable primes
Crossrefs
Programs
-
Mathematica
Clear[s]; s[0]={2,3,5,7}; n=1; While[s[n]={}; Do[k=s[n-1][[i]]; Do[p=j*10^n+k; If[PrimeQ[p], AppendTo[s[n],p]], {j,9}]; Do[p=10*k+j; If[PrimeQ[p], AppendTo[s[n],p]], {j,9}], {i,Length[s[n-1]]}]; s[n]=Union[s[n]]; Length[s[n]]>0, n++ ];t=s[0]; Do[t=Join[t,s[i]], {i,n}]; t
-
Python
from sympy import isprime def agen(): primes = [2, 3, 5, 7] while len(primes) > 0: yield from primes cands = set(int(d+str(p)) for p in primes for d in "123456789") cands |= set(int(str(p)+d) for p in primes for d in "1379") primes = sorted(c for c in cands if isprime(c)) afull = [an for an in agen()] print(afull[:60]) # Michael S. Branicky, Aug 04 2022
Comments