A137828 Expansion of phi(x) / f(-x^4)^2 in powers of x where phi(), f() are Ramanujan theta functions.
1, 2, 0, 0, 4, 4, 0, 0, 9, 12, 0, 0, 20, 24, 0, 0, 42, 50, 0, 0, 80, 92, 0, 0, 147, 172, 0, 0, 260, 296, 0, 0, 445, 510, 0, 0, 744, 840, 0, 0, 1215, 1372, 0, 0, 1944, 2176, 0, 0, 3059, 3424, 0, 0, 4740, 5268, 0, 0, 7239, 8040, 0, 0, 10920, 12072, 0, 0, 16286
Offset: 0
Keywords
Examples
G.f. = 1 + 2*x + 4*x^4 + 4*x^5 + 9*x^8 + 12*x^9 + 20*x^12 + 24*x^13 + 42*x^16 + ... G.f. = 1/q + 2*q^2 + 4*q^11 + 4*q^14 + 9*q^23 + 12*q^26 + 20*q^35 + 24*q^38 + ...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Michael Somos, Introduction to Ramanujan theta functions
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
Programs
-
Mathematica
a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, x] / QPochhammer[ x^4]^2, {x, 0, n}]; (* Michael Somos, Oct 04 2015 *)
-
PARI
{a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^5 / eta(x^4 + A)^4 / eta(x + A)^2, n))};
Formula
Expansion of q^(1/3) * eta(q^2)^5 / (eta(q)^2 * eta(q^4)^4) in powers of q.
Euler transform of period 4 sequence [ 2, -3, 2, 1, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (144 t)) = 6^(-1/2) (t/i)^(-1/2) g(t) where q = exp(2 Pi i t) and g(t) is the g.f. for A051136.
G.f.: Product_{k>0} (1 + x^k) / ( (1 - x^k) * (1 + x^(2*k))^4 ).
a(4*n + 2) = a(4*n + 3) = 0.
Comments