A137840
Number of distinct n-ary operators in a quaternary logic.
Original entry on oeis.org
4, 256, 4294967296, 340282366920938463463374607431768211456, 13407807929942597099574024998205846127479365820592393377723561443721764030073546976801874298166903427690031858186486050853753882811946569946433649006084096
Offset: 0
A364453
Smallest k such that 5^(5^n) - k is prime.
Original entry on oeis.org
2, 4, 64, 124, 228, 10978, 73738, 66346
Offset: 0
a(2) = 64 because 5^(5^2) - 64 = 298023223876953061 is prime.
-
lst={};Do[Do[p=5^(5^n)-k;If[PrimeQ[p],AppendTo[lst,k];Break[]],{k,2,11!}],{n,7}];lst
Table[k=1;Monitor[Parallelize[While[True,If[PrimeQ[5^(5^n)-k],Break[]];k++];k],k],{n,1,7}]
y[n_] := Module[{x = 5^(5^n)}, x - NextPrime[x, -1]]; Array[y, 7]
-
a(n) = my(x = 5^(5^n)); x - precprime(x);
Showing 1-2 of 2 results.
Comments