cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A364452 Smallest k such that 4^(4^n) - k is prime.

Original entry on oeis.org

1, 5, 5, 159, 569, 1557, 2439, 25353, 24317, 164073
Offset: 0

Views

Author

J.W.L. (Jan) Eerland, Jul 25 2023

Keywords

Comments

This is to 4 as A058220 is to 2 and A140331 is to 3.
a(8) > 22174.

Examples

			a(2) = 5 because 4^(4^2) - 5 = 4294967291 is prime.
		

Crossrefs

Programs

  • Mathematica
    lst={};Do[Do[p=4^(4^n)-k;If[PrimeQ[p],AppendTo[lst,k];Break[]],{k,2,11!}],{n,7}];lst
    Table[k=1;Monitor[Parallelize[While[True,If[PrimeQ[4^(4^n)-k],Break[]];k++];k],k],{n,1,7}]
    y[n_] := Module[{x = 4^(4^n)}, x - NextPrime[x, -1]]; Array[y, 7]
  • PARI
    a(n) = my(x = 4^(4^n)); x - precprime(x);

Formula

a(n) = A064722(A137840(n)).
a(n) = A058220(2*n+1). - Michael S. Branicky, Aug 23 2024

Extensions

a(8) using search and a(9) using A058220 from Michael S. Branicky, Aug 23 2024
a(0) = 1 prepended by Michael S. Branicky, Apr 20 2025

A364454 Smallest k such that 6^(6^n) - k is prime.

Original entry on oeis.org

1, 7, 35, 587, 629, 1819, 106843
Offset: 0

Views

Author

J.W.L. (Jan) Eerland, Jul 25 2023

Keywords

Comments

This is to 6 as A058220 is to 2 and A140331 is to 3.

Examples

			a(2) = 35 because 6^(6^2) - 35 = 10314424798490535546171949021 is prime.
		

Crossrefs

Programs

  • Mathematica
    lst={};Do[Do[p=6^(6^n)-k;If[PrimeQ[p],AppendTo[lst,k];Break[]],{k,2,11!}],{n,7}];lst
    Table[k=1;Monitor[Parallelize[While[True,If[PrimeQ[6^(6^n)-k],Break[]];k++];k],k],{n,1,7}]
    y[n_] := Module[{x = 6^(6^n)}, x - NextPrime[x, -1]]; Array[y, 7]
  • PARI
    a(n) = my(x = 6^(6^n)); x - precprime(x);

Extensions

a(6) from Michael S. Branicky, Aug 23 2024
a(0)=1 prepended by Alois P. Heinz, Aug 23 2024

A382666 Smallest k such that 7^(7^n) - k is prime.

Original entry on oeis.org

2, 2, 6, 512, 3918, 48966
Offset: 0

Views

Author

J.W.L. (Jan) Eerland, Apr 08 2025

Keywords

Comments

This is to 7 as A058220 is to 2, A140331 is to 3 and A364454 is to 6.
a(6) > 10000. - Michael S. Branicky, Apr 15 2025

Examples

			a(2) = 6 because 7^(7^2) - 6 = 256923577521058878088611477224235621321601 is prime.
		

Crossrefs

Programs

  • Mathematica
    lst={};Do[Do[p=7^(7^n)-k;If[PrimeQ[p],AppendTo[lst,k];Break[]],{k,2,11!}],{n,7}];lst
    Table[k=1;Monitor[Parallelize[While[True,If[PrimeQ[7^(7^n)-k],Break[]];k++];k],k],{n,0,7}]
    y[n_] := Module[{x = 7^(7^n)}, x - NextPrime[x, -1]]; Array[y, 7]
  • PARI
    a(n) = my(x = 7^(7^n)); x - precprime(x-1);
    
  • Python
    from sympy import prevprime
    def a(n):
        base = 7**(7**n)
        return base - prevprime(base)
    # Jakub Buczak, May 04 2025

Extensions

a(5) from Michael S. Branicky, Apr 14 2025
Showing 1-3 of 3 results.