cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A138566 Numbers n whose digits satisfy the following Diophantine equation: P = (X1* ... *Xr)/(X1+ ... +Xr), where P = prime number, Xi = digits of n.

Original entry on oeis.org

36, 44, 63, 66, 138, 145, 154, 159, 167, 176, 183, 195, 224, 235, 242, 253, 257, 275, 279, 297, 318, 325, 333, 345, 352, 354, 357, 375, 381, 415, 422, 435, 451, 453, 514, 519, 523, 527, 532, 534, 537, 541, 543, 572, 573, 591, 617, 671, 716, 725, 729, 735
Offset: 1

Views

Author

Ctibor O. Zizka, May 12 2008

Keywords

Examples

			n = 761, we have (7*6*1)/(7+6+1) = 3; a(56)= 761.
n = 792, we have (7*9*2)/(7+9+2) = 7; a(57)= 792.
n = 813, we have (8*1*3)/(8+1+3) = 2; a(58)= 813.
		

Crossrefs

Subsequence of A038367.
Cf. A137923.

Programs

  • Mathematica
    Block[{i = k, r = {}}, r = Table[p = IntegerDigits@i; If[PrimeQ[Times @@ p/Total@p], k, Nothing], {k, 735}];r] (* Mikk Heidemaa, May 26 2024 *)

A140281 A Diophantine equation over digits of n. Numbers n such that x_1/r +x_2/r-1 + ... + x_r/1 = k; x_i digits of n; k integer.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 320, 321, 322, 323, 324, 325, 326
Offset: 0

Views

Author

Ctibor O. Zizka, May 23 2008

Keywords

Examples

			n=321 : 3/3 + 2/2 + 1/1 = 3, 321 belongs to the sequence
		

Crossrefs

Programs

  • Mathematica
    Join[{0},Select[Range[400],IntegerQ[Total[IntegerDigits[#]/Reverse[ Range[ IntegerLength[ #]]]]]&]] (* Harvey P. Dale, May 17 2016 *)
Showing 1-2 of 2 results.