cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A137930 The sum of the principal diagonals of an n X n spiral.

Original entry on oeis.org

0, 1, 10, 25, 56, 101, 170, 261, 384, 537, 730, 961, 1240, 1565, 1946, 2381, 2880, 3441, 4074, 4777, 5560, 6421, 7370, 8405, 9536, 10761, 12090, 13521, 15064, 16717, 18490, 20381, 22400, 24545, 26826, 29241, 31800, 34501, 37354, 40357, 43520, 46841, 50330
Offset: 0

Views

Author

William A. Tedeschi, Feb 29 2008

Keywords

Comments

n X n spirals of the form:
(Examples of n = 3, 4)
7...8...9
6...1...2
5...4...3
and
7...8...9...10
6...1...2...11
5...4...3...12
16..15..14..13

Examples

			a(1) = mod(1^(1+1),1+1) + floor(1/2)^2*(6-4(-1)^1) + [16*floor(1/2)^3 + floor(1/2)*(14-12(-1)^1)]/3 = 1
a(2) = mod(2^(2+1),2+1) + floor(2/2)^2*(6-4(-1)^2) + [16*floor(2/2)^3 + floor(2/2)*(14-12(-1)^2)]/3 = 10
		

Crossrefs

Programs

  • Maple
    f:= n -> 2*n^3/3 + n^2/2 + 4*n/3 + 3*((-1)^n -1)/4:
    map(f, [$0..100]); # Robert Israel, Jun 25 2019

Formula

a(n) = mod(n^(n+1),n+1) + floor(n/2)^2*(6-4(-1)^n) + [16*floor(n/2)^3 + floor(n/2)*(14-12(-1)^n)]/3
Interweave A114254 and A137931.
Empirical G.f.: x*(1+7*x-3*x^2+3*x^3)/((1-x)^4*(1+x)). [Colin Barker, Jan 12 2012]
From Robert Israel, Jun 25 2019: (Start)
Empirical G.f. confirmed using G.f.'s of A114254 and A137931.
a(n) = 2*n^3/3 + n^2/2 + 4*n/3 + 3*((-1)^n -1)/4. (End)