cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A137931 Sum of the principal diagonals of a 2n X 2n square spiral.

Original entry on oeis.org

0, 10, 56, 170, 384, 730, 1240, 1946, 2880, 4074, 5560, 7370, 9536, 12090, 15064, 18490, 22400, 26826, 31800, 37354, 43520, 50330, 57816, 66010, 74944, 84650, 95160, 106506, 118720, 131834, 145880, 160890, 176896, 193930, 212024, 231210, 251520, 272986, 295640
Offset: 0

Views

Author

William A. Tedeschi, Feb 29 2008

Keywords

Comments

This is concerned with 2n X 2n square spirals of the form illustrated in the Example section.

Examples

			Example with n = 2:
.
   7---8---9--10
   |           |
   6   1---2  11
   |       |   |
   5---4---3  12
               |
  16--15--14--13
.
a(0) = 2(0)^2 + 2(0) + (16(0)^3 + 2(0))/3 =  0;
a(2) = 2(2)^2 + 2(2) + (16(2)^3 + 2(2))/3 = 56.
		

Crossrefs

Cf. A137928, A002061. A bisection of A137930.

Programs

  • Python
    f = lambda n: -1 + n + sum(2*k**2 - k + 1 for k in range(0,2*n+1))
    
  • Python
    a = lambda n: 2*n**2 + 2*n + (16*n**3 + 2*n)/3

Formula

a(n) = -1 + n + Sum_{k=0..2n} (2k^2 - k + 1) = n -1 +(2*n+1)*(8*n^2-n+3)/3.
a(n) = 2*n^2 + 2*n + (16*n^3 + 2*n)/3 = 2*n*(8*n^2+3*n+4)/3.
G.f.: 2*x*(3*x+5)*(x+1)/(x-1)^4. - Maksym Voznyy (voznyy(AT)mail.ru), Jul 27 2009