A137931 Sum of the principal diagonals of a 2n X 2n square spiral.
0, 10, 56, 170, 384, 730, 1240, 1946, 2880, 4074, 5560, 7370, 9536, 12090, 15064, 18490, 22400, 26826, 31800, 37354, 43520, 50330, 57816, 66010, 74944, 84650, 95160, 106506, 118720, 131834, 145880, 160890, 176896, 193930, 212024, 231210, 251520, 272986, 295640
Offset: 0
Examples
Example with n = 2: . 7---8---9--10 | | 6 1---2 11 | | | 5---4---3 12 | 16--15--14--13 . a(0) = 2(0)^2 + 2(0) + (16(0)^3 + 2(0))/3 = 0; a(2) = 2(2)^2 + 2(2) + (16(2)^3 + 2(2))/3 = 56.
Links
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Programs
-
Python
f = lambda n: -1 + n + sum(2*k**2 - k + 1 for k in range(0,2*n+1))
-
Python
a = lambda n: 2*n**2 + 2*n + (16*n**3 + 2*n)/3
Formula
a(n) = -1 + n + Sum_{k=0..2n} (2k^2 - k + 1) = n -1 +(2*n+1)*(8*n^2-n+3)/3.
a(n) = 2*n^2 + 2*n + (16*n^3 + 2*n)/3 = 2*n*(8*n^2+3*n+4)/3.
G.f.: 2*x*(3*x+5)*(x+1)/(x-1)^4. - Maksym Voznyy (voznyy(AT)mail.ru), Jul 27 2009
Comments