A137935 a(n) = 5n + 26*floor(n/5).
0, 5, 10, 15, 20, 51, 56, 61, 66, 71, 102, 107, 112, 117, 122, 153, 158, 163, 168, 173, 204, 209, 214, 219, 224, 255, 260, 265, 270, 275, 306, 311, 316, 321, 326, 357, 362, 367, 372, 377, 408, 413, 418, 423, 428, 459, 464, 469, 474, 479, 510, 515, 520, 525, 530, 561, 566
Offset: 0
Examples
a(0) = 5(0) + 26*floor(0/5) = 0 a(3) = 5(3) + 26*floor(3/5) = 15
Links
- Robert Israel, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,1,-1).
Crossrefs
Cf. A002266.
Programs
-
Maple
seq(5*n + 26*floor(n/5), n=0..200); # Robert Israel, Apr 02 2017
-
Python
a = lambda n: 5*n + 26*floor(n/5)
Formula
a(n) = 5n + 26*floor(n/5) = 5n + 26*A002266(n)
G.f.: (5*x+5*x^2+5*x^3+5*x^4+31*x^5)/(1-x-x^5+x^6). - Robert Israel, Apr 02 2017