A137940 Triangle read by rows, antidiagonals of an array formed by A000012 * A001263 (transform).
1, 1, 1, 1, 2, 1, 1, 2, 4, 1, 1, 2, 5, 7, 1, 1, 2, 5, 13, 11, 1, 1, 2, 5, 14, 31, 16, 1, 1, 2, 5, 14, 41, 66, 22, 1, 1, 2, 5, 14, 42, 116, 127, 29, 1, 1, 2, 5, 14, 42, 131, 302, 225, 37, 1, 1, 2, 5, 14, 42, 132, 407, 715, 373, 46, 1, 1, 2, 5, 14, 42, 132, 428, 1205, 1549, 586, 56, 1
Offset: 1
Examples
First few rows of the array: 1, 1, 1, 1, 1, ... 1, 2, 4, 7, 11, ... 1, 2, 5, 13, 31, ... 1, 2, 5, 14, 41, ... 1, 2, 5, 14, 42, ... ... First few rows of the triangle: 1; 1, 1; 1, 2, 1; 1, 2, 4, 1; 1, 2, 5, 7, 1; 1, 2, 5, 13, 11, 1; 1, 2, 5, 14, 31, 16, 1; 1, 2, 5, 14, 41, 66, 22, 1; 1, 2, 5, 14, 42, 116, 127, 29, 1; 1, 2, 5, 14, 42, 131, 302, 225, 37, 1; 1, 2, 5, 14, 42, 132, 407, 715, 373, 46, 1; ...
Links
- Antonio Bernini, Matteo Cervetti, Luca Ferrari, Einar Steingrimsson, Enumerative combinatorics of intervals in the Dyck pattern poset, arXiv:1910.00299 [math.CO], 2019. See Table 1 p. 4.
Formula
Extensions
More terms from Alois P. Heinz, Nov 28 2021
Comments