cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A137942 First bisection of A134772.

Original entry on oeis.org

1, 28, 27165600, 1445549490000000, 1081114481157129619200000, 5873237165016878140678626432000000, 156064894765355001368149078831725782016000000, 15583529649395480761968847415068808311749204480000000000, 4843348111055914672023195506389150149608445774198528000000000000000, 4067688449094150594904537709530563016131839124729830583634193326080000000000000
Offset: 0

Views

Author

N. J. A. Sloane, Oct 18 2009

Keywords

Crossrefs

Cf. A134772.

Programs

  • Magma
    B:=Binomial; F:=Factorial;
    A137942:= func< n | F(8*n)/(24)^(2*n)*(&+[B(2*n, j)*B(4*n, j)*(-6)^j/(F(j)*B(2*j, j)*B(8*n, 2*j)) : j in [0..2*n]]) >;
    [A137942(n): n in [0..30]]; // G. C. Greubel, Oct 16 2023
    
  • Mathematica
    Table[((8*n)!/(24)^(2*n))*Hypergeometric1F1[-2*n,1/2-4*n,-3/2], {n,0,30}] (* G. C. Greubel, Oct 16 2023 *)
  • SageMath
    b=binomial; f=factorial;
    def A137942(n): return (f(8*n)/(24)^(2*n))*sum(b(2*n,j)*b(4*n,j)*(-6)^j/(f(j)*b(2*j,j)*b(8*n,2*j)) for j in range(2*n+1))
    [A137942(n) for n in range(31)] # G. C. Greubel, Oct 16 2023

Formula

From G. C. Greubel, Oct 16 2023: (Start)
a(n) = ((8*n)!/(24)^(2*n))*Sum_{j=0..2*n} ( b(2*n, j)*b(4*n, j)*(-6)^j )/( j! * b(2*j, j)*b(8*n, 2*j) ), where b(x,y) = binomial(x,y).
a(n) = ((8*n)!/(24)^(2*n))*Hypergeometric1F1([-2*n], [1/2-4*n], -3/2). (End)
a(n) ~ sqrt(Pi) * 2^(18*n + 2) * n^(8*n + 1/2) / (3^(2*n) * exp(8*n + 3/4)). - Vaclav Kotesovec, Oct 21 2023