A137944 Numbers such that the number of composite divisors is a multiple of the number of prime divisors.
2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19, 23, 25, 27, 29, 31, 32, 36, 37, 41, 43, 47, 49, 53, 59, 61, 64, 67, 71, 73, 79, 81, 83, 89, 97, 100, 101, 103, 107, 109, 113, 120, 121, 125, 127, 128, 131, 137, 139, 144, 149, 151, 157, 163, 167, 168, 169, 173, 179, 181, 191, 193
Offset: 1
Keywords
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- Eric Weisstein's World of Mathematics, Divisor Function.
Programs
-
Mathematica
aQ[n_] := Divisible[DivisorSigma[0, n] - 1, PrimeNu[n]]; Select[Range[2, 193], aQ] (* Amiram Eldar, Aug 31 2019 *)
-
PARI
isok(k) = if(k == 1, 0, my(f = factor(k)); !((numdiv(f)-1) % omega(f))); \\ Amiram Eldar, Apr 18 2025