A137945 Non-prime-powers such that the number of composite divisors is a multiple of the number of prime divisors.
36, 100, 120, 144, 168, 196, 225, 264, 270, 280, 312, 324, 378, 400, 408, 440, 441, 456, 484, 520, 552, 576, 594, 616, 676, 680, 696, 702, 728, 744, 750, 760, 784, 888, 918, 920, 945, 952, 960, 984, 1026, 1032, 1064, 1089, 1128, 1144, 1156, 1160, 1225, 1240
Offset: 1
Keywords
Examples
A055212(120) = #{4,6,8,10,12,15,20,24,30,40,60,120} = 12 = 4*A001221(120) = 4*#{2,3,5} = 12, therefore 120 is a term.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..1000 from Reinhard Zumkeller)
- Eric Weisstein's World of Mathematics, Divisor Function
Programs
-
Mathematica
aQ[n_] := (omega = PrimeNu[n]) > 1 && Divisible[DivisorSigma[0, n] - 1, omega]; Select[Range[2, 1240], aQ] (* Amiram Eldar, Aug 31 2019 *)