cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A137954 G.f. satisfies A(x) = 1 + x + x^2*A(x)^4.

Original entry on oeis.org

1, 1, 1, 4, 10, 32, 107, 360, 1270, 4544, 16537, 61092, 228084, 860056, 3269994, 12521488, 48250690, 186959312, 727989318, 2847167632, 11179394088, 44053232012, 174160578150, 690576010820, 2745713062854, 10944253432600
Offset: 0

Views

Author

Paul D. Hanna, Feb 26 2008

Keywords

Crossrefs

Programs

  • Mathematica
    Flatten[{1,Table[Sum[Binomial[n-k,k]/(n-k)*Binomial[4*k,n-k-1],{k,0,n-1}],{n,1,20}]}] (* Vaclav Kotesovec, Sep 18 2013 *)
  • PARI
    {a(n)=local(A=1+x*O(x^n));for(i=0,n,A=1+x+x^2*A^4);polcoeff(A,n)}
    
  • PARI
    a(n)=if(n==0,1,sum(k=0,n-1,binomial(n-k,k)/(n-k)*binomial(4*k,n-k-1))) \\ Paul D. Hanna, Jun 16 2009

Formula

a(n) = Sum_{k=0..n-1} C(n-k,k)/(n-k) * C(4*k,n-k-1) for n>0 with a(0)=1. - Paul D. Hanna, Jun 16 2009
Recurrence: 3*(n-1)*n*(3*n-8)*(3*n-5)*(3*n-2)*(3*n+2)*a(n) = 64*(n-1)^2*(2*n-3)*(2*n-1)*(3*n-8)*(3*n-5)*a(n-2) + 32*(2*n-3)*(3*n-8)*(36*n^4 - 204*n^3 + 364*n^2 - 216*n + 35)*a(n-3) + 16*(3*n-2)*(144*n^5 - 1536*n^4 + 6005*n^3 - 10278*n^2 + 6790*n - 600)*a(n-4) + 8*n*(2*n-7)*(3*n-5)*(3*n-2)*(4*n-19)*(4*n-9)*a(n-5). - Vaclav Kotesovec, Sep 18 2013
a(n) ~ sqrt(s*(1-s)*(4-5*s) / ((24*s - 24)*Pi)) / (n^(3/2) * r^n), where r = 0.2362629484147719796376166796890824064312524895955... and s = 1.648350597886362639516822239585443208575003319460... are real roots of the system of equations s = 1 + r*(1 + r*s^4), 4 * r^2 * s^3 = 1. - Vaclav Kotesovec, Nov 22 2017