cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A137963 G.f. satisfies A(x) = 1 + x*(1 + x*A(x)^3)^5.

Original entry on oeis.org

1, 1, 5, 25, 160, 1075, 7671, 56760, 431865, 3357790, 26558520, 213032988, 1728808700, 14168337265, 117096909495, 974842628790, 8167462511193, 68813778610350, 582675107162175, 4955767502292960, 42318868510894860
Offset: 0

Views

Author

Paul D. Hanna, Feb 26 2008

Keywords

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1+x*O(x^n));for(i=0,n,A=1+x*(1+x*A^3)^5);polcoeff(A,n)}
    
  • PARI
    a(n)=if(n==0,1,sum(k=0,n-1,binomial(5*(n-k),k)/(n-k)*binomial(3*k,n-k-1))) \\ Paul D. Hanna, Jun 16 2009

Formula

G.f.: A(x) = 1 + x*B(x)^5 where B(x) is the g.f. of A137962.
a(n) = Sum_{k=0..n-1} C(5*(n-k),k)/(n-k) * C(3*k,n-k-1) for n>0 with a(0)=1. - Paul D. Hanna, Jun 16 2009
a(n) ~ sqrt(5*s*(1-s)*(3-4*s) / ((84*s - 60)*Pi)) / (n^(3/2) * r^n), where r = 0.1085884782751570249717333800652227343328635496829... and s = 1.404764002126311415321709718173984955120001713401... are real roots of the system of equations s = 1 + r*(1 + r*s^3)^5, 15 * r^2 * s^2 * (1 + r*s^3)^4 = 1. - Vaclav Kotesovec, Nov 22 2017