cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A137967 G.f. satisfies A(x) = 1 + x*(1 + x*A(x)^6)^2.

Original entry on oeis.org

1, 1, 2, 13, 66, 406, 2602, 17271, 118444, 829514, 5914980, 42791085, 313277294, 2316793170, 17281455882, 129867946828, 982293317064, 7472406051744, 57132051350160, 438797394096378, 3383870656327576, 26191385476141936
Offset: 0

Views

Author

Paul D. Hanna, Feb 26 2008

Keywords

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1+x*O(x^n));for(i=0,n,A=1+x*(1+x*A^6)^2);polcoeff(A,n)}
    
  • PARI
    a(n)=if(n==0,1,sum(k=0,n-1,binomial(2*(n-k),k)/(n-k)*binomial(6*k,n-k-1))) \\ Paul D. Hanna, Jun 16 2009

Formula

G.f.: A(x) = 1 + x*B(x)^2 where B(x) is the g.f. of A137968.
a(n) = Sum_{k=0..n-1} C(2*(n-k),k)/(n-k) * C(6*k,n-k-1) for n>0 with a(0)=1. - Paul D. Hanna, Jun 16 2009
a(n) ~ sqrt(2*s*(1-s)*(6-7*s) / ((132*s - 120)*Pi)) / (n^(3/2) * r^n), where r = 0.1201742080825038015263858974579392344239858277873... and s = 1.297009871974239150024579315539982910111693413337... are real roots of the system of equations s = 1 + r*(1 + r*s^6)^2, 12 * r^2 * s^5 * (1 + r*s^6) = 1. - Vaclav Kotesovec, Nov 22 2017