A138045 Triangle read by rows: largest proper divisor of n as a table, ones excluded.
0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0, 0, 0
Offset: 1
Examples
The first few terms of the table are: 0 0,0 0,0,0 0,2,0,0 0,0,0,0,0 0,0,3,0,0,0 0,0,0,0,0,0,0 0,0,0,4,0,0,0,0 0,0,3,0,0,0,0,0,0
Links
- Antti Karttunen, Table of n, a(n) for n = 1..23220 (the first 215 rows of the triangle).
- Eric Weisstein's World of Mathematics, Proper Divisor.
Programs
-
PARI
up_to = 23220; \\ binomial(215+1,2) A032742(n) = if(1==n,n,n/vecmin(factor(n)[,1])); A138045tr(n, k) = if((k>1) && (A032742(n)==k), k, 0); A138045list(up_to) = { my(v = vector(up_to), i=0); for(n=1,oo, for(k=1,n, i++; if(i > up_to, return(v)); v[i] = A138045tr(n,k))); (v); }; v138045 = A138045list(up_to); A138045(n) = v138045[n]; \\ Antti Karttunen, Dec 24 2018
Comments